The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need...The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).展开更多
The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in te...The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in temperate climate of Latvia. The data about electricity consumption, water consumption, chiller operation stages, cooling average temperatures and outdoor air parameters have been acquired for the period of 2.5 month, during the cooling season. Using data collected by BACnet based BMS controllers and adiabatic chiller control system, we have analyzed operation efficiency of the chiller and its dependence of outdoor air humidity. Data range for the period from August 1st till October 13th, 2011 was taken for deeper analysis, which showed that in temperature range 22.0 ± 0.5 ℃ for the studied period of time chiller's COP is slightly dependent on the outdoor air moisture.展开更多
基金This work was supported by Natural Science Basic Research Program of Shaanxi(2021JQ-689).
文摘The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).
文摘The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in temperate climate of Latvia. The data about electricity consumption, water consumption, chiller operation stages, cooling average temperatures and outdoor air parameters have been acquired for the period of 2.5 month, during the cooling season. Using data collected by BACnet based BMS controllers and adiabatic chiller control system, we have analyzed operation efficiency of the chiller and its dependence of outdoor air humidity. Data range for the period from August 1st till October 13th, 2011 was taken for deeper analysis, which showed that in temperature range 22.0 ± 0.5 ℃ for the studied period of time chiller's COP is slightly dependent on the outdoor air moisture.