期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于间接健康特征优化与多模型融合的锂电池SOH-RUL联合预测
1
作者 蔡雨思 李泽文 +2 位作者 刘萍 夏向阳 王文 《电工技术学报》 EI CSCD 北大核心 2024年第18期5883-5898,共16页
准确预测锂电池健康状态(SOH)与电池剩余使用寿命(RUL)对提高电池安全性能具有重要意义。而当前针对SOH和RUL的预测,存在着间接健康特征选取困难,以及使用数据驱动方法缺乏不确定性表达的问题。为此,该文提出一种基于间接健康特征优化... 准确预测锂电池健康状态(SOH)与电池剩余使用寿命(RUL)对提高电池安全性能具有重要意义。而当前针对SOH和RUL的预测,存在着间接健康特征选取困难,以及使用数据驱动方法缺乏不确定性表达的问题。为此,该文提出一种基于间接健康特征优化与多模型融合的锂电池SOH-RUL联合预测方法。首先从充电电压曲线中采集多个健康特征,并通过特征并行融合方法和注意力机制进行优化处理得到间接健康特征(IHF)。然后引入贝叶斯模型平均(BMA)方法来解决预测过程中的不确定性问题,将其与支持向量回归(SVR)和长短期记忆神经网络(LSTM)相结合,构建SVR-BMA融合模型和LSTM-BMA融合模型,并分别进行SOH和RUL预测;通过自适应噪声完备集合经验模态分解(CEEMDAN)方法从SOH预测阶段的容量预测结果中提取出RUL预测的输入特征,以实现SOH和RUL的联合预测。最后利用CALCE数据集进行性能测试,实验结果表明,所提方法能有效提高SOH和RUL预测的准确性和可靠性。 展开更多
关键词 电池健康状态 剩余使用寿命 间接健康特征 贝叶斯模型平均 支持向量回归 长短期记忆神经网络
下载PDF
基于VMD和优化CNN⁃GRU的锂电池剩余使用寿命间接预测
2
作者 徐达 王海瑞 朱贵富 《现代电子技术》 北大核心 2024年第2期133-139,共7页
准确预测锂电池的剩余使用寿命(RUL)对降低电池使用风险有着至关重要的作用。为了解决电池容量在实际应用中不易获得以及单一门控循环神经网络(GRU)不能有效提取数据间的深层特征等问题,提出一种基于间接健康因子的混合神经网络模型,即... 准确预测锂电池的剩余使用寿命(RUL)对降低电池使用风险有着至关重要的作用。为了解决电池容量在实际应用中不易获得以及单一门控循环神经网络(GRU)不能有效提取数据间的深层特征等问题,提出一种基于间接健康因子的混合神经网络模型,即融合变分模态分解(VMD)、一维卷积神经网络(1D‐CNN)和麻雀搜索算法(SSA)优化GRU的组合剩余使用寿命预测模型。采用NASA数据集验证所提模型的有效性,实验结果表明,相比于GRU、VMD‐GRU、VMD‐SSA‐GRU,所提模型具有较高的预测精度与更快的运行速度,可以应用于锂电池RUL预测。 展开更多
关键词 锂电池 剩余使用寿命预测 间接健康因子 变分模态分解 一维卷积神经网络 麻雀搜索算法 门控循环网络
下载PDF
基于IGWO-MKELM的锂离子电池剩余使用寿命预测 被引量:1
3
作者 宋健正 刘洋 +1 位作者 崔来熙 张梦迪 《电源学报》 CSCD 北大核心 2023年第1期168-176,共9页
随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MK... 随着锂离子电池在储能系统中比例迅速增大,为避免因电池性能退化导致的事故,如何准确预测锂离子电池剩余使用寿命就成为保障储能系统可靠运行的关键。针对锂离子电池剩余使用寿命预测的问题,提出一种改进灰狼优化多核极限学习机(IGWO-MKELM)预测方法。首先从电池充放电过程中提取能够表征电池寿命退化的间接健康因子作为输入量,然后采用改进灰狼算法对多核极限学习机参数进行寻优,建立改进灰狼优化多核极限学习机预测方法,最后使用NASA电池数据集进行仿真实验。结果表明,IGWO-MKELM方法可以更加精确地预测锂离子电池剩余寿命。 展开更多
关键词 锂离子电池 剩余使用寿命 间接健康因子 改进灰狼优化算法 多核极限学习机
下载PDF
基于鲸鱼算法优化深度极限学习机的锂离子电池剩余使用寿命间接预测
4
作者 郝锐 王海瑞 朱贵富 《化工自动化及仪表》 CAS 2023年第1期37-43,共7页
鉴于对锂离子电池直接预测剩余使用寿命(RUL)困难,而极限学习机预测效果不稳定的现状,提出基于等压降放电时间和深度极限学习机(DELM)相结合的间接预测方法。首先,在恒流放电过程中提取出表征电池性能退化的等压降放电时间,分析它与容... 鉴于对锂离子电池直接预测剩余使用寿命(RUL)困难,而极限学习机预测效果不稳定的现状,提出基于等压降放电时间和深度极限学习机(DELM)相结合的间接预测方法。首先,在恒流放电过程中提取出表征电池性能退化的等压降放电时间,分析它与容量间的相关程度并选之作为间接健康因子;其次,引入鲸鱼优化算法(WOA)优化深度极限学习机模型参数,构建锂离子电池RUL预测模型。用锂离子电池数据集中的B0005、B0007两个电池进行实验,结果表明:基于等压降放电时间的WOA-DELM模型预测方法相较于BP神经网络、DELM和PSO-DELM,能够更加准确地预测出锂离子电池的RUL,预测误差±5%,具有较好的预测精度和较快的收敛速度。 展开更多
关键词 WOA-DELM预测模型 锂离子电池 寿命预测 间接健康因子 鲸鱼优化算法
下载PDF
基于IGA-BP神经网络的锂电池健康状态估算 被引量:7
5
作者 何浩然 丁稳房 +1 位作者 吴铁洲 王航 《电源技术》 CAS 北大核心 2022年第1期73-77,共5页
针对锂离子电池健康状态(SOH)估算精度低、传统遗传算法(GA)易陷入局部最优、收敛速度慢的问题,为提高锂电池健康状态的估算精度,提出了交叉概率和变异概率自适应的调整策略对传统GA进行改进,在改进遗传算法(IGA)的作用下,使优良个体仍... 针对锂离子电池健康状态(SOH)估算精度低、传统遗传算法(GA)易陷入局部最优、收敛速度慢的问题,为提高锂电池健康状态的估算精度,提出了交叉概率和变异概率自适应的调整策略对传统GA进行改进,在改进遗传算法(IGA)的作用下,使优良个体仍保持较好的进化能力,算法初期搜索范围、后期局部搜索能力以及收敛速度也得到加强。提取间接健康因子,再用改进的遗传算法对BP神经网络的初始参数寻优得到IGA-BP神经网络模型,基于NASA锂电池数据集分别用GA-BP与IGA-BP神经网络算法对SOH进行估算。结果表明:IGA-BP神经网络算法估算精度更高,且具备快速收敛的优势,平均绝对百分比误差和均方根误差分别下降了0.422%和0.412,拟合程度提高了8.1%。 展开更多
关键词 锂离子电池 健康状态估算 自适应调整策略 IGA-BP 间接健康因子 参数寻优
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部