Due to the critical defects of techniques in fully autonomous vehicles,man-machine cooperative driving is still of great significance in today’s transportation system.Unlike the previous shared control structure,this...Due to the critical defects of techniques in fully autonomous vehicles,man-machine cooperative driving is still of great significance in today’s transportation system.Unlike the previous shared control structure,this paper introduces a double loop structure which is applied to indirect shared steering control between driver and automation.In contrast to the tandem indirect shared control,the parallel indirect shared control put the authority allocation system of steering angle into the framework to allocate the corresponding weighting coefficients reasonably and output the final desired steering angle according to the current deviation of vehicle and the accuracy of steering angles.Besides,the active disturbance rejection controller(ADRC)is also added in the frame in order to track the desired steering angle fleetly and accurately as well as restrain the internal and external disturbances effectively which including the steering friction torque,wind speed and ground interference etc.Eventually,we validated the advantages of double loop framework through three sets of double lane change and slalom experiments,respectively.Exactly as we expected,the simulation results show that the double loop structure can effectively reduce the lateral displacement error caused by the driver or the controller,significantly improve the tracking precision and keep great performance in trajectory tracking characteristics when driving errors occur in one of driver and controller.展开更多
基金supported by the National Natural Science Foundation of China(U1664263)。
文摘Due to the critical defects of techniques in fully autonomous vehicles,man-machine cooperative driving is still of great significance in today’s transportation system.Unlike the previous shared control structure,this paper introduces a double loop structure which is applied to indirect shared steering control between driver and automation.In contrast to the tandem indirect shared control,the parallel indirect shared control put the authority allocation system of steering angle into the framework to allocate the corresponding weighting coefficients reasonably and output the final desired steering angle according to the current deviation of vehicle and the accuracy of steering angles.Besides,the active disturbance rejection controller(ADRC)is also added in the frame in order to track the desired steering angle fleetly and accurately as well as restrain the internal and external disturbances effectively which including the steering friction torque,wind speed and ground interference etc.Eventually,we validated the advantages of double loop framework through three sets of double lane change and slalom experiments,respectively.Exactly as we expected,the simulation results show that the double loop structure can effectively reduce the lateral displacement error caused by the driver or the controller,significantly improve the tracking precision and keep great performance in trajectory tracking characteristics when driving errors occur in one of driver and controller.