In this work, we investigate the performance of InGaAs p-i-n photodetectors with cut-off wavelengths near 2.6 μm. The influences of different substrate materials on the optoelectronic properties of InGaAs detector ar...In this work, we investigate the performance of InGaAs p-i-n photodetectors with cut-off wavelengths near 2.6 μm. The influences of different substrate materials on the optoelectronic properties of InGaAs detector are also compared and discussed. GaAs-based device shows a significant enhancement in detector with a better performance for a InGaAs photodetector compared to InP- based device. In addition, our results show that the device performance is influenced by the conduction band offset. This work proves that InAlAs/InGaAs/GaAs structure is a promising candidate for high performance detector with optimally tuned band gap.展开更多
Phase separations have been studied for graded-indium content In_xGa_(1-x)N/GaN multiple quantum wells(MQWs) with different indium contents by means of photoluminescence(PL),cathodeluminescence(CL) and time-re...Phase separations have been studied for graded-indium content In_xGa_(1-x)N/GaN multiple quantum wells(MQWs) with different indium contents by means of photoluminescence(PL),cathodeluminescence(CL) and time-resolved PL(TRPL) techniques.Besides the main emission peaks,all samples show another 2 peaks at the high and low energy parts of the main peaks in PL when excited at 10 K.CL images show a clear contrast for 3 samples,which indicates an increasing phase separation with increasing indium content.TRPL spectra at 15 K of the main emissions show an increasing delay of rising time with indium content,which means a carrier transferring from low indium content structures to high indium content structures.展开更多
Microstructure and misfit dislocation behavior in In_xGa_(1-x)As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition(LP-MOCVD) were analyzed by high resolution transmission elec...Microstructure and misfit dislocation behavior in In_xGa_(1-x)As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition(LP-MOCVD) were analyzed by high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), atomic force microscopy(AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In_(0.82)Ga_(0.18)As/InP heterostructure, the In_xGa_(1-x)As buffer layer was grown. The residual strain of the In_(0.82)Ga_(0.18)As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium(In) content In_(0.82)Ga_(0.18)As epitaxial layer has significant influence on the carrier concentration.展开更多
文摘In this work, we investigate the performance of InGaAs p-i-n photodetectors with cut-off wavelengths near 2.6 μm. The influences of different substrate materials on the optoelectronic properties of InGaAs detector are also compared and discussed. GaAs-based device shows a significant enhancement in detector with a better performance for a InGaAs photodetector compared to InP- based device. In addition, our results show that the device performance is influenced by the conduction band offset. This work proves that InAlAs/InGaAs/GaAs structure is a promising candidate for high performance detector with optimally tuned band gap.
基金Project supported by the National Natural Science Foundation of China(No.11174241)the Natural Science Foundation of Shandong Province,China(No.2009VRA06063)the Natural Science Foundation for Distinguished Young Scholars of Shandong Province, China(No.2008JQB01028)
文摘Phase separations have been studied for graded-indium content In_xGa_(1-x)N/GaN multiple quantum wells(MQWs) with different indium contents by means of photoluminescence(PL),cathodeluminescence(CL) and time-resolved PL(TRPL) techniques.Besides the main emission peaks,all samples show another 2 peaks at the high and low energy parts of the main peaks in PL when excited at 10 K.CL images show a clear contrast for 3 samples,which indicates an increasing phase separation with increasing indium content.TRPL spectra at 15 K of the main emissions show an increasing delay of rising time with indium content,which means a carrier transferring from low indium content structures to high indium content structures.
基金supported by the National Key Basic Research Program of China(No.2012CB619200)the National Natural Science Foundation of China(No.61474053)+1 种基金the State Key Laboratory for Mechanical Behavior of Materials of Xi'an Jiaotong University(No.20161806)the Natural Science Basic Research Open Foundation of the Key Lab of Automobile Materials,Ministry of Education,Jilin University(No.1018320144001)
文摘Microstructure and misfit dislocation behavior in In_xGa_(1-x)As/InP heteroepitaxial materials grown by low pressure metal organic chemical vapor deposition(LP-MOCVD) were analyzed by high resolution transmission electron microscopy(HRTEM), scanning electron microscopy(SEM), atomic force microscopy(AFM), Raman spectroscopy and Hall effect measurements. To optimize the structure of In_(0.82)Ga_(0.18)As/InP heterostructure, the In_xGa_(1-x)As buffer layer was grown. The residual strain of the In_(0.82)Ga_(0.18)As epitaxial layer was calculated. Further, the periodic growth pattern of the misfit dislocation at the interface was discovered and verified. Then the effects of misfit dislocation on the surface morphology and microstructure of the material were studied. It is found that the misfit dislocation of high indium(In) content In_(0.82)Ga_(0.18)As epitaxial layer has significant influence on the carrier concentration.
基金Natural Science Foundation of Shanghai(10ZR1436300)Innovative Foundation of Shanghai Institute of Microsystem and Information TechnologyFoundation of Key Laboratory of Infrared Imaging Materials and Detectors CAS