Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1...Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400℃). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1, the crystalline seeds appear at T1= 300℃, and the films are amorphous at the temperature ranging from 27℃ to 400℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (Rp-v) and the surface microstructure of rio thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film's refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rote (fo2), and the mole ratio of Sn/In in the samples reduces with an increase info2.展开更多
Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1...Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1 at various IR irradiation temperatures T1 (from room temperature to 400?℃). The refractive index,deposited ratio,and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1,the crystalline seeds appear at T1=300?℃,and the films are amorphous at the temperature ranging from 27?℃ to 400?℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (R p-v ) and the surface microstructure of ITO thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film’s refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rate (fo2),and the mole ratio of Sn/In in the samples reduces with an increase in fo2.展开更多
Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanical...Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanically activated. It has been found that in the case of activated sample, shorter induction periods appear, which permits growth of smaller crystals, while in the case of non-activated sample, long induction periods appear, characterized by the growth of larger crystals. DAEM approach has shown that decomposition processes of non-activated and mechanically activated samples can be described by contracting volume model with a linear combination of two different density distribution functions of apparent activation energies(Ea), and with first-order model, with a single symmetrical density distribution function of Ea, respectively. It was established that specific characteristics of particles not only affect the mechanism of decomposition processes, but also have the significant impact on thermodynamic properties.展开更多
基金This work was financially supported by the National Defence Science Council of China (NO. 5141002040JW0504) and the Excellent Ph.D Thesis Foundation of Huazhong University of Science and Technology (No. HUST2004-39).
文摘Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1:1 at various IR irradiation temperatures T1 (from room temperature to 400℃). The refractive index, deposited ratio, and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1, the crystalline seeds appear at T1= 300℃, and the films are amorphous at the temperature ranging from 27℃ to 400℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (Rp-v) and the surface microstructure of rio thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film's refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rote (fo2), and the mole ratio of Sn/In in the samples reduces with an increase info2.
文摘Tin-doped indium oxide (ITO) thin films were prepared using conventional radio frequency (RF) planar magnetron sputtering equipped with IR irradiation using a ceramic target of In2O3/SnO2 with a mass ratio of 1∶1 at various IR irradiation temperatures T1 (from room temperature to 400?℃). The refractive index,deposited ratio,and resistivity are functions of the sputtering Ar gas pressure. The microstructure of ITO thin films is related to IR T1,the crystalline seeds appear at T1=300?℃,and the films are amorphous at the temperature ranging from 27?℃ to 400?℃. AFM investigation shows that the roughness value of peak-valley of ITO thin film (R p-v ) and the surface microstructure of ITO thin films have a close relation with T1. The IR irradiation results in a widening value of band-gap energy due to Burstein-Moss effect and the maximum visible transmittance shifts toward a shorter wavelength along with a decrease in the film’s refractive index. The plasma wavelength and the refractive index of ITO thin films are relative to the T1. XPS investigation shows that the photoelectrolytic properties can be deteriorated by the sub-oxides. The deterioration can be decreased by increasing the oxygen flow rate (fo2),and the mole ratio of Sn/In in the samples reduces with an increase in fo2.
基金partially supported by the Ministry of Science and Environmental Protection of Serbia under the Project 172015
文摘Isothermal decomposition process of chemically transforming indium tin oxide(ITO) powders into indium(III) hydroxide powders was investigated. Two types of powders were analyzed, i.e., non-activated and mechanically activated. It has been found that in the case of activated sample, shorter induction periods appear, which permits growth of smaller crystals, while in the case of non-activated sample, long induction periods appear, characterized by the growth of larger crystals. DAEM approach has shown that decomposition processes of non-activated and mechanically activated samples can be described by contracting volume model with a linear combination of two different density distribution functions of apparent activation energies(Ea), and with first-order model, with a single symmetrical density distribution function of Ea, respectively. It was established that specific characteristics of particles not only affect the mechanism of decomposition processes, but also have the significant impact on thermodynamic properties.