The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candid...The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.展开更多
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th...The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.展开更多
Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts we...Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.展开更多
乳腺癌(Breast cancer, BC)于2020年在全球新增癌症病例成为了最常见癌症,且发病率逐年升高。胶原蛋白是构成细胞外基质(Extracellular Matrix, ECM)的主要成分,近年来的研究发现III型胶原蛋白(Collagen Type III, COLIII)在乳腺癌的发...乳腺癌(Breast cancer, BC)于2020年在全球新增癌症病例成为了最常见癌症,且发病率逐年升高。胶原蛋白是构成细胞外基质(Extracellular Matrix, ECM)的主要成分,近年来的研究发现III型胶原蛋白(Collagen Type III, COLIII)在乳腺癌的发生、发展过程中发挥重要作用,并对肿瘤微环境(Tumor micro-environment, TME)的维持有重要意义。其中,癌症相关成纤维细胞(Cancer-associated fibroblasts, CAFs)在建立和重塑ECM结构中扮演关键角色,调控肿瘤细胞通过TME入侵的进程。但由于该体系庞大,通过分泌细胞因子和趋化因子与癌细胞相互作用的机制复杂,各成分及其亚型在癌症进展中的角色尚存争议。本文基于TME在乳腺恶性肿瘤中的研究现状以及作为ECM中重要成分的COLIII的性质结构、形态分布,分析COLIII通过改变ECM的机械力与刚度影响乳腺癌行为的机制,同时充分讨论特殊结构、来源的COLIII在微环境中的不同功能及作用方式,评估其应用于癌症治疗的可能性。展开更多
Objective: To investigate the effect of surgical nursing on grade III Hand-Foot Syndrome (HFS) induced by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery. Method: From January 2019 to Decem...Objective: To investigate the effect of surgical nursing on grade III Hand-Foot Syndrome (HFS) induced by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery. Method: From January 2019 to December 2019, 10 patients with HFS grade III caused by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery in the Breast Department of Cancer Prevention and Treatment Center of Sun Yat-sen University were selected, and surgical nursing methods were used to intervene and observe the therapeutic effects of the patients. Results: One patient was cured within 7 days, the cure rate was 10% in 7 days, 8 patients were cured within 10 days, the cure rate was 80% in 10 days, 10 patients were cured within 15 days, the cure rate was 100% in 15 days. Conclusion: The surgical nursing method is effective for patients with grade III HFS caused by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery, shortening the treatment time of HFS, and is worthy of clinical promotion.展开更多
The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)...The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2).展开更多
The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation w...The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation was to estimate the soil concentrations of gallium, indium, and thallium and determine if these elements have a soil chemistry like aluminum and therefore demonstrate significant concentration correlations with aluminum. Twenty-seven soil series were selected, and the elemental concentrations were determined using aqua regia digestion with analytical determination performed using inductively coupled plasma emission-mass spectroscopy. The concentrations of gallium, indium, and thallium generally compared with the known literature. Aluminum-gallium and aluminum-thallium exhibited significant concentration correlations across the soil horizons of the sampled soils. Aluminum, gallium, and thallium did demonstrate concentration increases in soil horizons having illuviation of phyllosilicates, implying these phyllosilicates have adsorption and isomorphic substitution behaviors involving these elements.展开更多
BACKGROUND Gustilo III fractures have a high incidence and are difficult to treat.Patients often experience difficulty in wound healing.Negative pressure drainage technology can help shorten wound healing time and has...BACKGROUND Gustilo III fractures have a high incidence and are difficult to treat.Patients often experience difficulty in wound healing.Negative pressure drainage technology can help shorten wound healing time and has positive value in improving patient prognosis.AIM To explore the clinical value of the negative pressure sealing drainage technique in wound healing of Gustilo IIIB and IIIC open fractures.METHODS Eighty patients with Gustilo IIIB and IIIC open fractures with skin and soft tissue injuries who were treated in the Second People’s Hospital of Dalian from March 2019 to December 2021 were selected as the research subjects.They were divided into a study group(n=40,healed with negative pressure closed drainage)and a control group(n=40,healed with conventional dressing changes)according to the variation in the healing they received.The efficacy of the clinical interventions,the variations in the regression indicators(time to wound healing,time to fracture healing,time to hospitalization),and the conversion and healing of bacterial wounds were compared 1-3 mo after the intervention.RESULTS The total effective rate of patients among the study group was 95.00%(38/40),which was notably higher than 75.00%(30/40)among the control group(P<0.05).The wound healing time,fracture healing time,and hospital stay of the patients in the study group was shorter than the control group(P<0.05).After the intervention,the negative bacterial culture at the wound site rate and wound healing rate of the patients among the study group increased compared to the control group(P<0.05).CONCLUSION Negative pressure sealing and drainage technology has a good therapeutic effect on patients with Gustilo IIIB and IIIC open fracture wounds with skin and soft tissue injury.It can notably enhance the wound healing rate and the negative rate of bacteria on the wound surface and help to speed up the recovery process of patients.展开更多
Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo...Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type.展开更多
目的:研究分析中青年视网膜静脉阻塞(Retinal Vein Occlusion, RVO)患者同型半胱氨酸(Homocysteine, Hcy)及抗凝血酶III (Antithrombin III, AT-III)水平,两者是否作为致病危险因素参与RVO发病。分析视网膜中央静脉阻塞(CRVO)和视网膜...目的:研究分析中青年视网膜静脉阻塞(Retinal Vein Occlusion, RVO)患者同型半胱氨酸(Homocysteine, Hcy)及抗凝血酶III (Antithrombin III, AT-III)水平,两者是否作为致病危险因素参与RVO发病。分析视网膜中央静脉阻塞(CRVO)和视网膜分支静脉阻塞(BRVO)危险因素的差异,为治疗和预防该病提供客观依据。方法:1) 所有研究对象选自2021年10月至2023年12月期间就诊于内蒙古自治区人民医院眼科的年龄 P > 0.05)。三组患者之间在Hcy、AT-III、胆固醇(CHOL)、叶酸、维生素B12、D-二聚体(D-D)、纤维蛋白降解产物(FDP)水平差异均有统计学意义(P P P < 0.001)。结论:1) Hcy水平升高和AT-III活性缺乏为中青年CRVO和BRVO的危险因素。2) 相对于BRVO患者,CRVO组中Hcy水平升高和AT-III缺乏的值更为显著。展开更多
A highly efficient catalyst indium (III) tribromide is used to synthesize 5-alkoxy-carbonyl-4-hydrocarbyl-3,4-dihydropyrimidin-2(1H)-ones by a three-component coupling of beta-keto ester, aldehydes and urea through im...A highly efficient catalyst indium (III) tribromide is used to synthesize 5-alkoxy-carbonyl-4-hydrocarbyl-3,4-dihydropyrimidin-2(1H)-ones by a three-component coupling of beta-keto ester, aldehydes and urea through improved Biginelli reaction.展开更多
基金financially supported by the Key Program of the National Natural Science Foundation of China(Nos.21935006).
文摘The sluggish kinetics of complicated multiphase conversions and the severe shuttling effect of lithium polysulfides(LiPSs)significantly hinder the applications of Li-S battery,which is one of the most promising candidates for the next-generation energy storage system.Herein,a bifunctional electrocatalyst,indium phthalocyanine self-assembled with carbon nanotubes(InPc@CNT)composite material,is proposed to promote the conversion kinetics of both reduction and oxidation processes,demonstrating a bidirectional catalytic effect on both nucleation and dissolution of Li_(2)S species.The theoretical calculation shows that the unique electronic configuration of InPc@CNT is conducive to trapping soluble polysulfides in the reduction process,as well as the modulation of electron transfer dynamics also endows the dissolution of Li_(2)S in the oxidation reaction,which will accelerate the effectiveness of catalytic conversion and facilitate sulfur utilization.Moreover,the InPc@CNT modified separator displays lower overpotential for polysulfide transformation,alleviating polarization of electrode during cycling.The integrated spectroscopy analysis,HRTEM,and electrochemical study reveal that the InPc@CNT acts as an efficient multifunctional catalytic center to satisfy the requirements of accelerating charging and discharging processes.Therefore,the Li-S battery with InPc@CNT-modified separator obtains a discharge-specific capacity of 1415 mAh g^(-1)at a high rate of 0.5 C.Additionally,the 2 Ah Li-S pouch cells deliver 315 Wh kg^(-1)and achieved 80%capacity retention after 50 cycles at 0.1 C with a high sulfur loading of 10 mg cm^(-2).Our study provides a practical method to introduce bifunctional electrocatalysts for boosting the electrochemical properties of Li-S batteries.
基金supported by the National Natural Science Foundation of China(52074180)the Science and Technology Major Project of Yunnan Province(202302AB080020)+2 种基金the Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2023-Z07)the Science and Technology Commission of Shanghai Municipality(19DZ2270200)the Program for Professor of Special Appointment(Eastern Scholar)at SIHL,Shanghai Sailing Program(19YF1416500).
文摘The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.
基金supported by the National Science Foundation of China(21776268,21721004,22108274 and 22378383)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21060200)support provided by Shanxi Yanchang Petroleum(Group)Co.,Ltd.(yc-hw-2022ky-02).
文摘Exploring stable and robust catalysts to replace the current toxic CuCr based catalysts for dehydrogenative coupling of ethanol to ethyl acetate is a challenging but promising task.Herein,novel NiIn based catalysts were developed by tailoring Ni catalysts with Indium(In)for this reaction.Over the optimal Ni0.1Zn0.7Al0.3InOx catalyst,the ethyl acetate selectivity reached 90.1%at 46.2%ethanol conversion under the conditions of 548 K and a weight hourly space velocity of 1.9 h^(-1)in the 370 h time on stream.Moreover,the ethyl acetate productivity surpassed 1.1 g_(ethyl acetate)g_(catalyst)^(-1)h^(-1),,one of the best performance in current works.According to catalyst characterizations and conditional experiments,the active sites for dehydrogenative coupling of ethanol to ethyl acetate were proved to be Ni4In alloys.The presence of In tailored the chemical properties of Ni,and subsequently inhibited the C-C cracking and/or condensation reactions during ethanol conversions.Over Ni4In alloy sites,ethanol was dehydrogenated into acetaldehyde,and then transformed into acetyl species with the removal of H atoms.Finally,the coupling between acetyl species and surface-abundant ethoxyde species into ethyl acetate was achieved,affording a high ethyl acetate selectivity and catalyst stability.
文摘Objective: To investigate the effect of surgical nursing on grade III Hand-Foot Syndrome (HFS) induced by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery. Method: From January 2019 to December 2019, 10 patients with HFS grade III caused by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery in the Breast Department of Cancer Prevention and Treatment Center of Sun Yat-sen University were selected, and surgical nursing methods were used to intervene and observe the therapeutic effects of the patients. Results: One patient was cured within 7 days, the cure rate was 10% in 7 days, 8 patients were cured within 10 days, the cure rate was 80% in 10 days, 10 patients were cured within 15 days, the cure rate was 100% in 15 days. Conclusion: The surgical nursing method is effective for patients with grade III HFS caused by Doxorubicin hydrochloride liposome chemotherapy after breast cancer surgery, shortening the treatment time of HFS, and is worthy of clinical promotion.
基金supported by the Russian Science Foundation(grant No.22-19-00037),https://rscf.ru/project/22-19-00037/.
文摘The hydrothermal synthesis of In_(2)O_(3)and CeO_(2)–In_(2)O_(3)is investigated as well as the properties of sensor layers based on these compounds.During the synthesis of In_(2)O_(3),intermediate products In(OH)_(3)and InOOH are formed,which are the precursors of stable cubic(c-In_(2)O_(3))and metastable rhombohedral(rh-In_(2)O_(3))phases,respectively.A transition from c-In_(2)O_(3)to rh-In_(2)O_(3)is observed with the addition of CeO_(2).The introduction of cerium into rh-In_(2)O_(3)results in a decrease in the sensor response to hydrogen,while it increases in composites based on c-In_(2)O_(3).The data on the sensor activity of the composites correlate with XPS results in which CeO_(2)causes a decrease in the concentrations of chemisorbed oxygen and oxygen vacancies in rh-In_(2)O_(3).The reverse situation is observed in composites based on c-In_(2)O_(3).Compared to In_(2)O_(3)and CeO_(2)–In_(2)O_(3)obtained by other methods,the synthesized composites demonstrate maximum response to H_(2)at low temperatures by 70–100℃,and have short response time(0.2–0.5 s),short recovery time(6–7 s),and long-term stability.A model is proposed for the dependence of sensitivity on the direction of electron transfer between In_(2)O_(3)and CeO_(2).
文摘The soil chemistry of gallium, indium, and thallium is not well defined, particularly with emerging evidence that these elements have toxic properties and may influence food safety. The purpose of this investigation was to estimate the soil concentrations of gallium, indium, and thallium and determine if these elements have a soil chemistry like aluminum and therefore demonstrate significant concentration correlations with aluminum. Twenty-seven soil series were selected, and the elemental concentrations were determined using aqua regia digestion with analytical determination performed using inductively coupled plasma emission-mass spectroscopy. The concentrations of gallium, indium, and thallium generally compared with the known literature. Aluminum-gallium and aluminum-thallium exhibited significant concentration correlations across the soil horizons of the sampled soils. Aluminum, gallium, and thallium did demonstrate concentration increases in soil horizons having illuviation of phyllosilicates, implying these phyllosilicates have adsorption and isomorphic substitution behaviors involving these elements.
基金the Review Committee of Fuzhou Medical College of Nanchang University(Approval No.4445644).
文摘BACKGROUND Gustilo III fractures have a high incidence and are difficult to treat.Patients often experience difficulty in wound healing.Negative pressure drainage technology can help shorten wound healing time and has positive value in improving patient prognosis.AIM To explore the clinical value of the negative pressure sealing drainage technique in wound healing of Gustilo IIIB and IIIC open fractures.METHODS Eighty patients with Gustilo IIIB and IIIC open fractures with skin and soft tissue injuries who were treated in the Second People’s Hospital of Dalian from March 2019 to December 2021 were selected as the research subjects.They were divided into a study group(n=40,healed with negative pressure closed drainage)and a control group(n=40,healed with conventional dressing changes)according to the variation in the healing they received.The efficacy of the clinical interventions,the variations in the regression indicators(time to wound healing,time to fracture healing,time to hospitalization),and the conversion and healing of bacterial wounds were compared 1-3 mo after the intervention.RESULTS The total effective rate of patients among the study group was 95.00%(38/40),which was notably higher than 75.00%(30/40)among the control group(P<0.05).The wound healing time,fracture healing time,and hospital stay of the patients in the study group was shorter than the control group(P<0.05).After the intervention,the negative bacterial culture at the wound site rate and wound healing rate of the patients among the study group increased compared to the control group(P<0.05).CONCLUSION Negative pressure sealing and drainage technology has a good therapeutic effect on patients with Gustilo IIIB and IIIC open fracture wounds with skin and soft tissue injury.It can notably enhance the wound healing rate and the negative rate of bacteria on the wound surface and help to speed up the recovery process of patients.
基金Supported by The Science and Technology Project of General Administration of Quality Supervision,Inspection and Quarantine (2015IK126)The Science and Technology Project of Changsha City of Hunan Province of China (KQ1602124).
文摘Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type.
文摘目的:研究分析中青年视网膜静脉阻塞(Retinal Vein Occlusion, RVO)患者同型半胱氨酸(Homocysteine, Hcy)及抗凝血酶III (Antithrombin III, AT-III)水平,两者是否作为致病危险因素参与RVO发病。分析视网膜中央静脉阻塞(CRVO)和视网膜分支静脉阻塞(BRVO)危险因素的差异,为治疗和预防该病提供客观依据。方法:1) 所有研究对象选自2021年10月至2023年12月期间就诊于内蒙古自治区人民医院眼科的年龄 P > 0.05)。三组患者之间在Hcy、AT-III、胆固醇(CHOL)、叶酸、维生素B12、D-二聚体(D-D)、纤维蛋白降解产物(FDP)水平差异均有统计学意义(P P P < 0.001)。结论:1) Hcy水平升高和AT-III活性缺乏为中青年CRVO和BRVO的危险因素。2) 相对于BRVO患者,CRVO组中Hcy水平升高和AT-III缺乏的值更为显著。
基金the National Natural Science Foundation of China(29872018&29972026).
文摘A highly efficient catalyst indium (III) tribromide is used to synthesize 5-alkoxy-carbonyl-4-hydrocarbyl-3,4-dihydropyrimidin-2(1H)-ones by a three-component coupling of beta-keto ester, aldehydes and urea through improved Biginelli reaction.