BH Cen is a short-period early-type binary with a period of 0.792^d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are ana...BH Cen is a short-period early-type binary with a period of 0.792^d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A3 = 0.024 d and a period of P3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer.The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of˙M2 = 2.8×10^-6 M⊙per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.展开更多
We report here an investigation of the X-ray eclipse transitions of the high mass X-ray binary pulsar Cen X-3 in different intensity states. The long term light curve of Cen X-3 obtained with RXTE-ASM spanning more th...We report here an investigation of the X-ray eclipse transitions of the high mass X-ray binary pulsar Cen X-3 in different intensity states. The long term light curve of Cen X-3 obtained with RXTE-ASM spanning more than 5000 d shows strong aperiodic flux variations with low and high states. We have investigated the eclipse transitions of Cen X-3 in different intensity states with data obtained from pointed observations with the more sensitive instruments onboard ASCA, BeppoSAX, XMM- Newton, Chandra and RXTE. We found a very clear trend of sharp eclipse transitions in the high state and longer transitions in the low state. This is a confirmation of this feature first observed with the RXTE-ASM but now observed with much better clarity. From the light curves obtained from several missions, it is seen that the eclipse egress in the low state starts earlier by an orbital phase of 0.02 compared to the eclipse egress in the high state indicating that the observed X-rays originate from a much larger region. We have also performed spectral analysis of the post-eclipse part of each observation. From BeppoSAX observations, the out-of-eclipse X-ray flux is found to differ by a factor of -26 during the high and low intensity states while the eclipse count rates differ by a factor of only ~ 4.7. This indicates that in the low state, there is an additional scattering medium which scatters some of the source photons towards the observer even when the neutron star is completely eclipsed. We could also resolve the three iron line components using XMM-Newton observation in the low state. By comparing the iron line equivalent width during the high and low states, it is seen that the width of the iron line is relatively large during the low state which supports the fact that significant reprocessing and scattering of X-rays takes place in the low state.展开更多
Taking into consideration the effects of rotation and interior magnetic field during the lifetime of the star, we reconstruct the model of α Cen B to satisfy the latest nonasteroseismic and asteroseismic observationa...Taking into consideration the effects of rotation and interior magnetic field during the lifetime of the star, we reconstruct the model of α Cen B to satisfy the latest nonasteroseismic and asteroseismic observational constraints. We find that the effects can induce a change of about 0.3 μHz in the large frequency spacings and can speed up the star's evolution. The model of a Cen B has thereby been improved.展开更多
Abstract We report the discovery of 45 high-velocity extreme horizontal branch (EHB) stars in the globular cluster Omega Centauri (NGC 5139). The tangential ve- locities of these EHB stars are determined to be in ...Abstract We report the discovery of 45 high-velocity extreme horizontal branch (EHB) stars in the globular cluster Omega Centauri (NGC 5139). The tangential ve- locities of these EHB stars are determined to be in the range 93-313 km s^-1, with an average uncertainty of -27 km s^-1. The central escape velocity of the cluster is determined to be in the range 60~105 km s^-1. These EHB stars are significantly more concentrated toward the cluster core compared with other cluster members. The formation mechanisms of these EHB stars are discussed. Our conclusions can be sum- marized as follows: (1) A comparison of the tangential velocities of these EHB stars to the central escape velocity of the cluster shows that most if not all of these EHB stars are unbound to the cluster; (2) These EHB stars obtained high velocities in the central cluster region no longer than - 1 Myr ago and may be subsequently ejected from the cluster in the next -1 Myr; (3) If the progenitors of these EHB stars were single stars, then they may have experienced a fast mass-loss process. If the progen- itors were in close binaries, then they may have formed through disruptions by the intermediate-mass black hole in the cluster center.展开更多
We present a spectroscopic study of two polar systems, V834 Cen and MR Ser observed with IUE (International Ultraviolet Explorer) obtained during the period 1982-1991 and 1982-1987 for both systems respectively, to di...We present a spectroscopic study of two polar systems, V834 Cen and MR Ser observed with IUE (International Ultraviolet Explorer) obtained during the period 1982-1991 and 1982-1987 for both systems respectively, to diagnose the ultraviolet fluxes of C IV 1550 and He II 1640 emission lines originating in the accretion stream during different orbital phases. Two spectra for both systems showing the variations in line fluxes at different orbital phases in high and intermediate states are presented. We concentrated on calculating the line fluxes of C IV & He II emission lines. Our results show that there is spectral variability for the line fluxes at different times, similar to that for optical spectrum of V834 Cen [1] and similar to that for the light curves of MR Ser [2]. We attribute this spectral variability to the variations of mass accretion rate [3]. Also we found that the line fluxes of both CIV and He II for V834 Cen are greater than the line fluxes of MR Ser.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11325315)
文摘BH Cen is a short-period early-type binary with a period of 0.792^d in the extremely young star-forming cluster IC 2944. New multi-color CCD photometric light curves in U, B, V, R and I bands are presented and are analyzed by using the Wilson-Devinney code. It is detected that BH Cen is a high-mass-ratio overcontact binary with a fill-out factor of 46.4% and a mass ratio of 0.89. The derived orbital inclination i is 88.9 degrees, indicating that it is a totally eclipsing binary and the photometric parameters can be determined reliably. By adding new eclipse times, the orbital period changes in the binary are analyzed. It is confirmed that the period of BH Cen shows a long-term increase while it undergoes a cyclic oscillation with an amplitude of A3 = 0.024 d and a period of P3 = 50.3 yr. The high mass ratio, overcontact configuration and long-term continuous increase in the orbital period all suggest that BH Cen is in the evolutionary state after the shortest-period stage of Case A mass transfer.The continuous increase in period can be explained by mass transfer from the secondary component to the primary one at a rate of˙M2 = 2.8×10^-6 M⊙per year. The cyclic change can be plausibly explained by the presence of a third body because both components in the BH Cen system are early-type stars. Its mass is determined to be no less than 2.2 M⊙ at an orbital separation of about 32.5 AU. Since no third light was found during the photometric solution, it is possible that the third body may be a candidate for a compact object.
文摘We report here an investigation of the X-ray eclipse transitions of the high mass X-ray binary pulsar Cen X-3 in different intensity states. The long term light curve of Cen X-3 obtained with RXTE-ASM spanning more than 5000 d shows strong aperiodic flux variations with low and high states. We have investigated the eclipse transitions of Cen X-3 in different intensity states with data obtained from pointed observations with the more sensitive instruments onboard ASCA, BeppoSAX, XMM- Newton, Chandra and RXTE. We found a very clear trend of sharp eclipse transitions in the high state and longer transitions in the low state. This is a confirmation of this feature first observed with the RXTE-ASM but now observed with much better clarity. From the light curves obtained from several missions, it is seen that the eclipse egress in the low state starts earlier by an orbital phase of 0.02 compared to the eclipse egress in the high state indicating that the observed X-rays originate from a much larger region. We have also performed spectral analysis of the post-eclipse part of each observation. From BeppoSAX observations, the out-of-eclipse X-ray flux is found to differ by a factor of -26 during the high and low intensity states while the eclipse count rates differ by a factor of only ~ 4.7. This indicates that in the low state, there is an additional scattering medium which scatters some of the source photons towards the observer even when the neutron star is completely eclipsed. We could also resolve the three iron line components using XMM-Newton observation in the low state. By comparing the iron line equivalent width during the high and low states, it is seen that the width of the iron line is relatively large during the low state which supports the fact that significant reprocessing and scattering of X-rays takes place in the low state.
基金The Ministry of Science and Technology of the People's Republic of China through Grant 2007CB815406the NSFC through Grants 10173021,10433030,10773003 and 10778601
文摘Taking into consideration the effects of rotation and interior magnetic field during the lifetime of the star, we reconstruct the model of α Cen B to satisfy the latest nonasteroseismic and asteroseismic observational constraints. We find that the effects can induce a change of about 0.3 μHz in the large frequency spacings and can speed up the star's evolution. The model of a Cen B has thereby been improved.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.11403004)the School Foundation of Changzhou University(ZMF1002121)+3 种基金support by the 973 Program(2014CB845702)the Strategic Priority Research Program The Emergence of Cosmological Structures of the Chinese Academy of Sciences(CASgrant XDB09010100)by the NSFC(No.11373054)
文摘Abstract We report the discovery of 45 high-velocity extreme horizontal branch (EHB) stars in the globular cluster Omega Centauri (NGC 5139). The tangential ve- locities of these EHB stars are determined to be in the range 93-313 km s^-1, with an average uncertainty of -27 km s^-1. The central escape velocity of the cluster is determined to be in the range 60~105 km s^-1. These EHB stars are significantly more concentrated toward the cluster core compared with other cluster members. The formation mechanisms of these EHB stars are discussed. Our conclusions can be sum- marized as follows: (1) A comparison of the tangential velocities of these EHB stars to the central escape velocity of the cluster shows that most if not all of these EHB stars are unbound to the cluster; (2) These EHB stars obtained high velocities in the central cluster region no longer than - 1 Myr ago and may be subsequently ejected from the cluster in the next -1 Myr; (3) If the progenitors of these EHB stars were single stars, then they may have experienced a fast mass-loss process. If the progen- itors were in close binaries, then they may have formed through disruptions by the intermediate-mass black hole in the cluster center.
文摘We present a spectroscopic study of two polar systems, V834 Cen and MR Ser observed with IUE (International Ultraviolet Explorer) obtained during the period 1982-1991 and 1982-1987 for both systems respectively, to diagnose the ultraviolet fluxes of C IV 1550 and He II 1640 emission lines originating in the accretion stream during different orbital phases. Two spectra for both systems showing the variations in line fluxes at different orbital phases in high and intermediate states are presented. We concentrated on calculating the line fluxes of C IV & He II emission lines. Our results show that there is spectral variability for the line fluxes at different times, similar to that for optical spectrum of V834 Cen [1] and similar to that for the light curves of MR Ser [2]. We attribute this spectral variability to the variations of mass accretion rate [3]. Also we found that the line fluxes of both CIV and He II for V834 Cen are greater than the line fluxes of MR Ser.