Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environ...Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.展开更多
BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against...BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.展开更多
The difference of sensitivity to indole- 3-acetic acid ( IAA ) combined with horseradish peroxidase (HRP) in K562 and BXPC- 3 cells was investigated. The cell proliferation was determined by MTF assay. The cell cy...The difference of sensitivity to indole- 3-acetic acid ( IAA ) combined with horseradish peroxidase (HRP) in K562 and BXPC- 3 cells was investigated. The cell proliferation was determined by MTF assay. The cell cycle and apoptosis of K562 and BXPC-3 cells were examined by a fluorescence flow cytometer (FCM) and terminal deoxynacleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) respectively. The experimental results show that IAA and HRP could inhibit BXPC- 3 cell proliferation greatly compared with K562 cell during the first 48 h . The cell cycle was arrested predominantly at G2/ M phase in K562 and BXPC- 3 cells. The cell apoptosis of K562 and BXPC- 3 was induced by IAA/ HRP. There was a significant difference between the two cell lines since BXPC-3 cells were more sensitive than K562 cells by treatments with combination of IAA and HRP.展开更多
<b><span style="font-family:Verdana;">Background:</span></b><span style="font-family:""><span style="font-family:Verdana;"> It is not well analyze...<b><span style="font-family:Verdana;">Background:</span></b><span style="font-family:""><span style="font-family:Verdana;"> It is not well analyzed whether there are differences in plasma levels of tryptophan (TRP) metabolites between healthy control people (HC) and patients of major monopolar depression (MMD). </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Ultra high-speed </span></span><span style="font-family:""><span style="font-family:Verdana;">liquid chromatography/mass spectrometry has been used for the simultaneous determination of plasma levels of tryptophan metabolites in depressive </span><span><span style="font-family:Verdana;">patients. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> There are no significant differences between plasma levels of TRP between HC and MMD. Plasma levels of TRP of HC are higher in young men, young women, old men, and old women in this order. Serotonin (5-HT) levels are higher in MMD than HC. Plasma levels of 5-HIAA of HC are also higher than those of patients of MMD. Plasma levels of kynurenine (KYN) of healthy old men and old women are higher than those of young men and old women. Plasma levels of KYN are higher in old women and young men of MMD than those of HC. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> Plasma levels of 5-HT are higher in patients of MMD than those of HC, which may suggest that use of drugs inhibiting the 5-HT transportation may increase plasma levels of 5-HT in MMD.展开更多
Shea nuts play an important role in food security for rural folks within sub-Sahara Africa, serving as the main source of income for many people living in Northern Ghana. Unfortunately, the full economic potential of ...Shea nuts play an important role in food security for rural folks within sub-Sahara Africa, serving as the main source of income for many people living in Northern Ghana. Unfortunately, the full economic potential of the Sheanut tree has not been fully realized due to the difficulty involved in its domestication. This difficulty in vegetatively propagating sheanut trees has greatly hindered its cultivation and the realization of its true economic potential. Two experiments were conducted to investigate the effects of rooting media and varying indole 3-butyric acid (IBA) concentrations on adventitious root formation in cuttings taken from coppiced sheanut trees. Results indicated that 3000 ppm produced significantly (p 0.05) better rooting (57.5%) than 5000 ppm (30%), 7000 ppm (45.0%) and the control (7.5%). Although the levels of soluble sugars (SS) and total free phenols (TFP) in the cutting were significantly (p 0.05) higher at the end of the experiment (after IBA treatment) compared to the start (prior to IBA treatment), the SS and TFP trends observed did not clearly explain the rooting differences found between the IBA levels investigated. Callus formation was significantly (p 0.05) higher (35.0%) in the control (no IBA). Generally, callus formation decreased with increasing IBA concentration. In the rooting media experiment, rooting was significantly (p 0.05) higher in the rice husk medium (35.0%) compared to that in the palm fiber (18.3%), saw dust (14.1%) and top soil (16.7%) media.展开更多
Platinum nanowire (PtNW) can be grown by electrodeposition in polycarbonate membrane, with the average diameter of the nanowires about 250 nm. The PtNW and multiwalled carbon nanotubes (CNT) are then dispersed int...Platinum nanowire (PtNW) can be grown by electrodeposition in polycarbonate membrane, with the average diameter of the nanowires about 250 nm. The PtNW and multiwalled carbon nanotubes (CNT) are then dispersed into chitosan (CHIT) solution. The resulting PtNW-CNT-CHIT material brings new capabilities for electrochemical devices by using the synergistic action of the electrocatalytic activity of PtNW and CNT. By dropping the PtNW-CNT-CHIT film onto the glassy carbon (GO) electrode surface, and after evaporation an amperometric sensor for the determination of indole-3-acetic acid (IAA) was developed. The oxidation current of IAA increased significantly at the PtNW-CNT-CHIT film coated GC electrode, in contrast to that at the CNT-CHIT modified GC. The linear response of the sensor is from 50 ng/ml to 50 μg/ml with a detection limit of 25 ng/mL.展开更多
A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p)...A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p) levels. Two alterative reaction channels of the concerted and addition/elimination stepwise processes including the uncatalyzed, base-catalyzed reactions are taken into consideration. Subsequently, the substituent effects and solvent effects in methanol are also evaluated at the M06-2 X/6-311++G(d,p) level. The calculated results indicate that the calculated values of M06-2 X level are quite close to those of MP2, the stepwise pathway has more advantages to the concerted one for all of the reaction processes and the catalyst facilitates the proton migration and decreases the energy barriers as well. It is shown that the most preferred mechanism is the based-catalyzed stepwise process, the substituent of NH2 group slightly accelerates all the aminolysis reaction processes, and the solvent effect does not remarkably change the mechanism of the reaction.展开更多
Nitric oxide(NO)and hydrogen peroxide(H2O2)are essential signaling molecules with key roles in auxin induced adventitious root formation in many plants.However,whether they are the sole determinants for adventitio...Nitric oxide(NO)and hydrogen peroxide(H2O2)are essential signaling molecules with key roles in auxin induced adventitious root formation in many plants.However,whether they are the sole determinants for adventitious root formation is worth further study.In this study,endogenous NO and H2O2 were monitored in tea cutting with or without indole-3-butyric acid(IBA)treatment by using the fluorescent probes diaminofluorescein diacetate(DAF-2DA)and 2',7'-dichlorodihydrofluorescein diacetate(DCF-DA),respectively.The overproduction of NO and H2O2 was detected in the rooting parts of tea cuttings treated with or without IBA.But little NO and H2O2 was detected before the initiation phase of tea cuttings even with IBA treatment indicating that they might be not directly induced by IBA.Further carbon and nitrogen analysis found that the overproduction of NO and H2O2 were coincident with the consumption of soluble sugars and the assimilation of nitrogen.These results suggest that rooting phases should be taken into consideration with the hypothesis that auxin induces adventitious root formation via NO-and H2O2-dependent pathways and sink establishment might be a prerequisite for NO and H2O2 mediated adventitious root formation.展开更多
Effects of different Indole-3-Buteric Acid (IBA) concentrations (0, 1 000, 1 500 and 2 500 ppm) and curing types (soft wood, semi hard and hard wood) of plane tree were investigated with Randomized Complete Bloc...Effects of different Indole-3-Buteric Acid (IBA) concentrations (0, 1 000, 1 500 and 2 500 ppm) and curing types (soft wood, semi hard and hard wood) of plane tree were investigated with Randomized Complete Block Design (RCBD) at the Agricultural research station, Charsadda. The maximum survival percentage, plant height (cm), root length (era), numbers of roots and root weight per cutting were significantly higher in hard wood cuttings. IBA concentration had no speculative effect on plane tree cuttings. Thus, hard wood cutting was the best choice for plan tree propagation.展开更多
The present study, conducted during 2016 and 2017 seasons, aimed to investigate the effect of IBA on rooting of Piper betle L. stem cuttings (softwood and semi-hardwood). The experiment was undertaken in misting house...The present study, conducted during 2016 and 2017 seasons, aimed to investigate the effect of IBA on rooting of Piper betle L. stem cuttings (softwood and semi-hardwood). The experiment was undertaken in misting house field 2 UPM using the sand media to determine the adventitious roots initiation and development using the histological method. The cuttings were treated with different IBA concentrations (0, 500, 1000, 1500 and 2000 mg/L). The nodes explants were used in the development of a protocol for in vitro propagation of P. betle L., with different concentrations of Clorox with different times of immersion (20% Clorox 10 minutes, 30% Clorox 10 minutes, 20% Clorox 20 minutes, and 30% 20 minutes). In multiplication of the plantlets, Murashige and Skoog (MS) medium with different concentrations of BAP (0, 0.5, 1.0, 2.0 mg/L) were used to investigate the rooting of the explants. The results indicated that the types of the cuttings were different in the rooting capacity and the length of the roots. Moreover, it was found that in comparison with the control treatment, by a rise in the concentrations of the IBA, there was a significant upsurge in the rooting percentage, the root diameter, and the number of the roots. The results indicated that the types of cutting with 1000, 1500 and 2000 mg/L IBA perform better in the root percentage (100%) in the semi hardwood cuttings. The best results, however, were 2000 mg/L IBA in the semi hardwood cuttings, with the number of the roots to be 35.05, and the fresh weight of the roots to be 3.94 g, the dry weight of the roots to be 0.33 g, the length of the roots to be 391.88 cm, the roots diameter to be 1.21 mm, the surface area of the roots to be 121.83 cm2, and the root volume to be 2.99 cm3. Nonetheless, the optimal concentration of Clorox with the time immersion was 20% with the 20-minute immersion time, which produced a shoot induction percentage of 30% dead explants and a mean number of 70.00 shoots per explant and the optimal concentration of benzylaminopurine (BAP) at 1.0 mg/L. It is of note that a shoot induction percentage of 22.29% and a mean number of 4.1% number of auxiliary bud per treatment. P. betle shoots in MS medium without PGR MS (0.0) yielded a good rooting.展开更多
The rapid synthesis of 3-bromocarbarole-N-acetic acid was performed using microwave irradiation. Under the optimal conditions the yield was 85.6% . The crystal structure showed that the carboxylic groups form bifurcat...The rapid synthesis of 3-bromocarbarole-N-acetic acid was performed using microwave irradiation. Under the optimal conditions the yield was 85.6% . The crystal structure showed that the carboxylic groups form bifurcated hydrogen bonds and the hydroxyl oxygen atoms serve as proton donors and also acceptor. Each carboxylic group was involved in four hydrogen bonds. The package of crystal was dominated by links of these hydrogen bonds.展开更多
A new coordination polymer {[Cd(C_(21)H_(14)N_6)(C_8H_4O_4)]·H_2O}_n(1) was synthesized by an elaborate design via the reaction of 3-(2,6-di(pyrazin-2-yl)pyridin-4-yl)-1H-indole(bppi),1,4-benzene-...A new coordination polymer {[Cd(C_(21)H_(14)N_6)(C_8H_4O_4)]·H_2O}_n(1) was synthesized by an elaborate design via the reaction of 3-(2,6-di(pyrazin-2-yl)pyridin-4-yl)-1H-indole(bppi),1,4-benzene-dicarboxylic acid(H2bdc) and cadmium(Ⅱ) nitrate in CH_3OH/H_2O mixed solvents. Complex 1 crystallizes in orthorhombic,space group Ccca with a = 20.012(4),b = 31.881(6),c = 19.808(4) ?,V = 12638(4) ?~3,Z = 16,C_(29)H_(20)CdN_6O_5,M_r = 644.91,D_c = 1.356 g·cm^(-3),μ = 0.735 mm^(-1),F(000) = 5184,GOOF = 1.046,the final R = 0.0405 and wR = 0.1063 for 6870 observed reflections(I 〉 2σ(I)). The Cd(Ⅱ) centre is hepta-coordinated by three N and four O atoms from one bppi terminal ligand and two bdc2– ligands,respectively,displaying a capped trigonal prism geometry. Structure extension gives coordination polymeric chains,in which the bdc2– linkers connect Cd(Ⅱ) cations into a one-dimensional(1D) coordination polymer along the c axis,giving zigzag chains with the Cd···Cd separation of 11.178(1) ?. The adjacent bppi terminal ligands in the chains are anti-periplanar conformation. The three-dimensional(3D) structure is stabilized by π···π stacking and hydrogen-bonding interactions to form a supramolecular self-penetrating network with 1D channels. In 1,there are voids 2999.7 ?~3 with 23.7% of per unit cell volume. Thermal analysis indicates that the framework of 1 is stable until 651 K and the photoluminescence of 1 in the solid shows very weak fluorescence at 382 and 560 nm upon excitation at 310 nm.展开更多
3-(1-Ethyl-1H-indole-3-carbonyl)aminopropionic acid has been synthesized by alkylation of 3-(1H-indole-3-carbonyl)aminopropionic acid methyl ester with bromoethane,follo-wed by saponifying and acidating,in 89.0% y...3-(1-Ethyl-1H-indole-3-carbonyl)aminopropionic acid has been synthesized by alkylation of 3-(1H-indole-3-carbonyl)aminopropionic acid methyl ester with bromoethane,follo-wed by saponifying and acidating,in 89.0% yield.Its crystal structure was gotten and determined by X-ray diffraction method.The crystal is of orthorhombic,space group P212121 with a = 8.9490(12),b = 11.1010(15),c = 13.0475(18) ,V = 1296.2(3) 3,Z = 4,Dc = 1.334 g/cm3,λ = 0.71073 ,μ(MoKα) = 0.095 mm-1,Mr = 260.29 and F(000) = 552.The structure was refined to R = 0.0306 and wR = 0.1445 for 2612 observed reflections with I 2σ(I).In the crystal structure,molecules are linked to each other through hydrogen bonds of N(2)-H(2)···O(1) and O(3)-H(3)···O(1),generating a three-dimensional network.展开更多
The coupling reaction of 3-cyanoacetyl-2-methylindole 1a with the aromatic diazonium salts gave the corresponding arylhydrazones 2a-e. Compounds 2 were used for synthesis of 4-aminopyrazole-5-carbonitrile 4a-e and 5-a...The coupling reaction of 3-cyanoacetyl-2-methylindole 1a with the aromatic diazonium salts gave the corresponding arylhydrazones 2a-e. Compounds 2 were used for synthesis of 4-aminopyrazole-5-carbonitrile 4a-e and 5-amino-4-arylazo-3-pyrazoles 5a-e derivatives. Also, treatment of 3-cyanoacetyl-2-phenylindole 1b with phenyl isothiocyanate gave the corresponding thioacetanilide 7. The later compound 7 was utilized as the key intermediate for the synthesis of some new thiadiazole derivatives 9a-r. The structures of all new compounds were elucidated on the basis of elemental analysis and spectral data.展开更多
The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional....The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.展开更多
This study was conducted during 2019/2020 on sweet cherry trees (<i>Prunus Avium</i> L.) (Bing and Hardy Giant) cultivar planted at Sergaya-Al_Zabadani area of Rural </span><span style="font-...This study was conducted during 2019/2020 on sweet cherry trees (<i>Prunus Avium</i> L.) (Bing and Hardy Giant) cultivar planted at Sergaya-Al_Zabadani area of Rural </span><span style="font-family:"">Dam</span><span style="font-family:"">ascus, to reduce fruit drop of sweet cherry. The experiment included 4 foliar applications: T1: control, T2: GA<sub>3</sub> (100 ppm), T3: NAA (20 <span>ppm), T4: (100 ppm GA<sub>3</sub> + 20 ppm NAA). Fruit set and fruit drop pe</span>rcentage, fruiting factor, and yield were recorded. The results showed that treatment with (100 ppm GA<sub>3</sub> + 20 ppm NAA) recorded higher fruit set percentage (73.81% and 75.62%), and fruiting factor (48.38% and 50.04%) respectively</span><span style="font-family:"">;</span><span style="font-family:""> <span>In addition to fruit yield (40.19 and 41.21 kg/tree) for both cultivars, co</span>mpared to the control (9.13, 6.60 kg/tree). Therefore, it can be concluded that GA<sub>3</sub> + NAA treatment reduced Sweet cherry fruit drop better than other treatments, <span>where fruit drop percentage didn’t exceed (63.11% and 62.01%) in both cu</span>ltivars (Bing and Hardy Giant) respectively, compared to the control (80.92% and 80.64%).展开更多
The title compound, acetic acid-3,5-diacetoxy-2-acetoxymethyl-6-(4-quinoxalin- 2-yl-phenoxy)-tetrahydro-pyran-4-yl-ester 8 (C28H28N2O10, Mr = 552.54), has been synthesized and its crystal structure was determined ...The title compound, acetic acid-3,5-diacetoxy-2-acetoxymethyl-6-(4-quinoxalin- 2-yl-phenoxy)-tetrahydro-pyran-4-yl-ester 8 (C28H28N2O10, Mr = 552.54), has been synthesized and its crystal structure was determined by X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, a = 10.060(8), b = 5.648(4), c = 24.11(2)A, β = 91.078(10)°, Z = 2, V= 1369.9(19)A^3, Dc = 1.339 g/cm^3,μ(MoKa) = 1.03 cm^-1, F(000) = 580.00, T =. 193.1 Kx-9 θmax = 25.03, (△/σ)max = 0.0000, Flack = -0.0(24), the final R = 0.0680 and wR = 0.140 (w = 1/[0.0016Fo^2 + 1.00000(Fo^2)]/(4Fo^2)) for 3126 observed reflections (1 〉 20(/)). The pyranoid ring adopts chair conformation in the sugar moiety, and all of the acetyl groups are in the e bond of the pyranoid ring, so the sugar moiety is very stable.展开更多
基金the China Scholarship Council(CSC)for funding(no.201806310116)。
文摘Mg-air batteries have attracted tremendous attention as a potential next-generation power source for portable electronics and e-transportation due to their remarkable high theoretical volumetric energy density,environmental sustainability,and cost-effectiveness.However,the fast hydrogen evolution reaction(HER)in NaCl-based aqueous electrolytes impairs the performance of Mg-air batteries and leads to poor specific capacity,low energy density,and low utilization.Thus,the conventionally used NaCl solute was proposed to be replaced by NaNO_(3)and acetic acid additive as a corrosion inhibitor,therefore an electrolyte engineering for long-life time Mg-air batteries is reported.The resulting Mg-air batteries based on this optimized electrolyte demonstrate an improved discharge voltage reaching~1.8 V for initial 5 h at a current density of 0.5 mA/cm^(2) and significantly prolonged cells'operational lifetime to over 360 h,in contrast to only~17 h observed in NaCl electrolyte.X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry were employed to analyse the composition of surface film and scanning electron microscopy combined with transmission electron microscopy to clarify the morphology changes of the surface layer as a function of acetic acid addition.The thorough studies of chemical composition and morphology of corrosion products have allowed us to elucidate the working mechanism of Mg anode in this optimized electrolyte for Mg-air batteries.
文摘BACKGROUND Leukemia stem cells(LSCs)are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia(AML),as they are protected by the bone marrow microenvironment(BMM)against conventional therapies.Gossypol acetic acid(GAA),which is extracted from the seeds of cotton plants,exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2.AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism.METHODS In this study,LSCs were magnetically sorted from AML cell lines and the CD34+CD38-population was obtained.The expression of leucine-rich pentatricopeptide repeat-containing protein(LRPPRC)and forkhead box M1(FOXM1)was evaluated in LSCs,and the effects of GAA on malignancies and mitochondrial RESULTS LRPPRC was found to be upregulated,and GAA inhibited cell proliferation by degrading LRPPRC.GAA induced LRPPRC degradation and inhibited the activation of interleukin 6(IL-6)/janus kinase(JAK)1/signal transducer and activator of transcription(STAT)3 signaling,enhancing chemosensitivity in LSCs against conventional chemotherapies,including L-Asparaginase,Dexamethasone,and cytarabine.GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC.Furthermore,GAA induced reactive oxygen species accumulation,disturbed mitochondrial homeostasis,and caused mitochondrial dysfunction.By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC,GAA resulted in the elimination of LSCs.Meanwhile,GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage.CONCLUSION Taken together,the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.
基金Funded by the National Natural Science Foundation of China(No.30170011) ,the Construction Fund for"211"Project of theMinistry of Education of China and the Natural Science Foundationof Hubei Province (No.2006ABA197)
文摘The difference of sensitivity to indole- 3-acetic acid ( IAA ) combined with horseradish peroxidase (HRP) in K562 and BXPC- 3 cells was investigated. The cell proliferation was determined by MTF assay. The cell cycle and apoptosis of K562 and BXPC-3 cells were examined by a fluorescence flow cytometer (FCM) and terminal deoxynacleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) respectively. The experimental results show that IAA and HRP could inhibit BXPC- 3 cell proliferation greatly compared with K562 cell during the first 48 h . The cell cycle was arrested predominantly at G2/ M phase in K562 and BXPC- 3 cells. The cell apoptosis of K562 and BXPC- 3 was induced by IAA/ HRP. There was a significant difference between the two cell lines since BXPC-3 cells were more sensitive than K562 cells by treatments with combination of IAA and HRP.
文摘<b><span style="font-family:Verdana;">Background:</span></b><span style="font-family:""><span style="font-family:Verdana;"> It is not well analyzed whether there are differences in plasma levels of tryptophan (TRP) metabolites between healthy control people (HC) and patients of major monopolar depression (MMD). </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Ultra high-speed </span></span><span style="font-family:""><span style="font-family:Verdana;">liquid chromatography/mass spectrometry has been used for the simultaneous determination of plasma levels of tryptophan metabolites in depressive </span><span><span style="font-family:Verdana;">patients. </span><b><span style="font-family:Verdana;">Results:</span></b><span style="font-family:Verdana;"> There are no significant differences between plasma levels of TRP between HC and MMD. Plasma levels of TRP of HC are higher in young men, young women, old men, and old women in this order. Serotonin (5-HT) levels are higher in MMD than HC. Plasma levels of 5-HIAA of HC are also higher than those of patients of MMD. Plasma levels of kynurenine (KYN) of healthy old men and old women are higher than those of young men and old women. Plasma levels of KYN are higher in old women and young men of MMD than those of HC. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> Plasma levels of 5-HT are higher in patients of MMD than those of HC, which may suggest that use of drugs inhibiting the 5-HT transportation may increase plasma levels of 5-HT in MMD.
文摘Shea nuts play an important role in food security for rural folks within sub-Sahara Africa, serving as the main source of income for many people living in Northern Ghana. Unfortunately, the full economic potential of the Sheanut tree has not been fully realized due to the difficulty involved in its domestication. This difficulty in vegetatively propagating sheanut trees has greatly hindered its cultivation and the realization of its true economic potential. Two experiments were conducted to investigate the effects of rooting media and varying indole 3-butyric acid (IBA) concentrations on adventitious root formation in cuttings taken from coppiced sheanut trees. Results indicated that 3000 ppm produced significantly (p 0.05) better rooting (57.5%) than 5000 ppm (30%), 7000 ppm (45.0%) and the control (7.5%). Although the levels of soluble sugars (SS) and total free phenols (TFP) in the cutting were significantly (p 0.05) higher at the end of the experiment (after IBA treatment) compared to the start (prior to IBA treatment), the SS and TFP trends observed did not clearly explain the rooting differences found between the IBA levels investigated. Callus formation was significantly (p 0.05) higher (35.0%) in the control (no IBA). Generally, callus formation decreased with increasing IBA concentration. In the rooting media experiment, rooting was significantly (p 0.05) higher in the rice husk medium (35.0%) compared to that in the palm fiber (18.3%), saw dust (14.1%) and top soil (16.7%) media.
基金supported by the NNSF of China(No.20435010,30540019,30670190 and 3060049)the Natural Science Foundation of Hunan Province(No.0JJY1003 and 05C306).
文摘Platinum nanowire (PtNW) can be grown by electrodeposition in polycarbonate membrane, with the average diameter of the nanowires about 250 nm. The PtNW and multiwalled carbon nanotubes (CNT) are then dispersed into chitosan (CHIT) solution. The resulting PtNW-CNT-CHIT material brings new capabilities for electrochemical devices by using the synergistic action of the electrocatalytic activity of PtNW and CNT. By dropping the PtNW-CNT-CHIT film onto the glassy carbon (GO) electrode surface, and after evaporation an amperometric sensor for the determination of indole-3-acetic acid (IAA) was developed. The oxidation current of IAA increased significantly at the PtNW-CNT-CHIT film coated GC electrode, in contrast to that at the CNT-CHIT modified GC. The linear response of the sensor is from 50 ng/ml to 50 μg/ml with a detection limit of 25 ng/mL.
基金supported by the Special Funds of the National Natural Science Foundation of China(No.11347161)
文摘A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p) levels. Two alterative reaction channels of the concerted and addition/elimination stepwise processes including the uncatalyzed, base-catalyzed reactions are taken into consideration. Subsequently, the substituent effects and solvent effects in methanol are also evaluated at the M06-2 X/6-311++G(d,p) level. The calculated results indicate that the calculated values of M06-2 X level are quite close to those of MP2, the stepwise pathway has more advantages to the concerted one for all of the reaction processes and the catalyst facilitates the proton migration and decreases the energy barriers as well. It is shown that the most preferred mechanism is the based-catalyzed stepwise process, the substituent of NH2 group slightly accelerates all the aminolysis reaction processes, and the solvent effect does not remarkably change the mechanism of the reaction.
基金indebted to the earmarked fund for China Agriculture Research System (CARS-19)the Innovation Project for Agricultural Sciences and Technology from the Chinese Academy of Agricultural Sciences (CAAS-ASTIP2017-TRICAAS) for their financial supports
文摘Nitric oxide(NO)and hydrogen peroxide(H2O2)are essential signaling molecules with key roles in auxin induced adventitious root formation in many plants.However,whether they are the sole determinants for adventitious root formation is worth further study.In this study,endogenous NO and H2O2 were monitored in tea cutting with or without indole-3-butyric acid(IBA)treatment by using the fluorescent probes diaminofluorescein diacetate(DAF-2DA)and 2',7'-dichlorodihydrofluorescein diacetate(DCF-DA),respectively.The overproduction of NO and H2O2 was detected in the rooting parts of tea cuttings treated with or without IBA.But little NO and H2O2 was detected before the initiation phase of tea cuttings even with IBA treatment indicating that they might be not directly induced by IBA.Further carbon and nitrogen analysis found that the overproduction of NO and H2O2 were coincident with the consumption of soluble sugars and the assimilation of nitrogen.These results suggest that rooting phases should be taken into consideration with the hypothesis that auxin induces adventitious root formation via NO-and H2O2-dependent pathways and sink establishment might be a prerequisite for NO and H2O2 mediated adventitious root formation.
文摘Effects of different Indole-3-Buteric Acid (IBA) concentrations (0, 1 000, 1 500 and 2 500 ppm) and curing types (soft wood, semi hard and hard wood) of plane tree were investigated with Randomized Complete Block Design (RCBD) at the Agricultural research station, Charsadda. The maximum survival percentage, plant height (cm), root length (era), numbers of roots and root weight per cutting were significantly higher in hard wood cuttings. IBA concentration had no speculative effect on plane tree cuttings. Thus, hard wood cutting was the best choice for plan tree propagation.
文摘The present study, conducted during 2016 and 2017 seasons, aimed to investigate the effect of IBA on rooting of Piper betle L. stem cuttings (softwood and semi-hardwood). The experiment was undertaken in misting house field 2 UPM using the sand media to determine the adventitious roots initiation and development using the histological method. The cuttings were treated with different IBA concentrations (0, 500, 1000, 1500 and 2000 mg/L). The nodes explants were used in the development of a protocol for in vitro propagation of P. betle L., with different concentrations of Clorox with different times of immersion (20% Clorox 10 minutes, 30% Clorox 10 minutes, 20% Clorox 20 minutes, and 30% 20 minutes). In multiplication of the plantlets, Murashige and Skoog (MS) medium with different concentrations of BAP (0, 0.5, 1.0, 2.0 mg/L) were used to investigate the rooting of the explants. The results indicated that the types of the cuttings were different in the rooting capacity and the length of the roots. Moreover, it was found that in comparison with the control treatment, by a rise in the concentrations of the IBA, there was a significant upsurge in the rooting percentage, the root diameter, and the number of the roots. The results indicated that the types of cutting with 1000, 1500 and 2000 mg/L IBA perform better in the root percentage (100%) in the semi hardwood cuttings. The best results, however, were 2000 mg/L IBA in the semi hardwood cuttings, with the number of the roots to be 35.05, and the fresh weight of the roots to be 3.94 g, the dry weight of the roots to be 0.33 g, the length of the roots to be 391.88 cm, the roots diameter to be 1.21 mm, the surface area of the roots to be 121.83 cm2, and the root volume to be 2.99 cm3. Nonetheless, the optimal concentration of Clorox with the time immersion was 20% with the 20-minute immersion time, which produced a shoot induction percentage of 30% dead explants and a mean number of 70.00 shoots per explant and the optimal concentration of benzylaminopurine (BAP) at 1.0 mg/L. It is of note that a shoot induction percentage of 22.29% and a mean number of 4.1% number of auxiliary bud per treatment. P. betle shoots in MS medium without PGR MS (0.0) yielded a good rooting.
文摘The rapid synthesis of 3-bromocarbarole-N-acetic acid was performed using microwave irradiation. Under the optimal conditions the yield was 85.6% . The crystal structure showed that the carboxylic groups form bifurcated hydrogen bonds and the hydroxyl oxygen atoms serve as proton donors and also acceptor. Each carboxylic group was involved in four hydrogen bonds. The package of crystal was dominated by links of these hydrogen bonds.
基金supported by the National Natural Science Foundation of China(Nos.21571118&21271121)
文摘A new coordination polymer {[Cd(C_(21)H_(14)N_6)(C_8H_4O_4)]·H_2O}_n(1) was synthesized by an elaborate design via the reaction of 3-(2,6-di(pyrazin-2-yl)pyridin-4-yl)-1H-indole(bppi),1,4-benzene-dicarboxylic acid(H2bdc) and cadmium(Ⅱ) nitrate in CH_3OH/H_2O mixed solvents. Complex 1 crystallizes in orthorhombic,space group Ccca with a = 20.012(4),b = 31.881(6),c = 19.808(4) ?,V = 12638(4) ?~3,Z = 16,C_(29)H_(20)CdN_6O_5,M_r = 644.91,D_c = 1.356 g·cm^(-3),μ = 0.735 mm^(-1),F(000) = 5184,GOOF = 1.046,the final R = 0.0405 and wR = 0.1063 for 6870 observed reflections(I 〉 2σ(I)). The Cd(Ⅱ) centre is hepta-coordinated by three N and four O atoms from one bppi terminal ligand and two bdc2– ligands,respectively,displaying a capped trigonal prism geometry. Structure extension gives coordination polymeric chains,in which the bdc2– linkers connect Cd(Ⅱ) cations into a one-dimensional(1D) coordination polymer along the c axis,giving zigzag chains with the Cd···Cd separation of 11.178(1) ?. The adjacent bppi terminal ligands in the chains are anti-periplanar conformation. The three-dimensional(3D) structure is stabilized by π···π stacking and hydrogen-bonding interactions to form a supramolecular self-penetrating network with 1D channels. In 1,there are voids 2999.7 ?~3 with 23.7% of per unit cell volume. Thermal analysis indicates that the framework of 1 is stable until 651 K and the photoluminescence of 1 in the solid shows very weak fluorescence at 382 and 560 nm upon excitation at 310 nm.
基金supported by the Natural Science Foundation of Guangdong Province (No.06300581)
文摘3-(1-Ethyl-1H-indole-3-carbonyl)aminopropionic acid has been synthesized by alkylation of 3-(1H-indole-3-carbonyl)aminopropionic acid methyl ester with bromoethane,follo-wed by saponifying and acidating,in 89.0% yield.Its crystal structure was gotten and determined by X-ray diffraction method.The crystal is of orthorhombic,space group P212121 with a = 8.9490(12),b = 11.1010(15),c = 13.0475(18) ,V = 1296.2(3) 3,Z = 4,Dc = 1.334 g/cm3,λ = 0.71073 ,μ(MoKα) = 0.095 mm-1,Mr = 260.29 and F(000) = 552.The structure was refined to R = 0.0306 and wR = 0.1445 for 2612 observed reflections with I 2σ(I).In the crystal structure,molecules are linked to each other through hydrogen bonds of N(2)-H(2)···O(1) and O(3)-H(3)···O(1),generating a three-dimensional network.
文摘The coupling reaction of 3-cyanoacetyl-2-methylindole 1a with the aromatic diazonium salts gave the corresponding arylhydrazones 2a-e. Compounds 2 were used for synthesis of 4-aminopyrazole-5-carbonitrile 4a-e and 5-amino-4-arylazo-3-pyrazoles 5a-e derivatives. Also, treatment of 3-cyanoacetyl-2-phenylindole 1b with phenyl isothiocyanate gave the corresponding thioacetanilide 7. The later compound 7 was utilized as the key intermediate for the synthesis of some new thiadiazole derivatives 9a-r. The structures of all new compounds were elucidated on the basis of elemental analysis and spectral data.
文摘The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.
文摘This study was conducted during 2019/2020 on sweet cherry trees (<i>Prunus Avium</i> L.) (Bing and Hardy Giant) cultivar planted at Sergaya-Al_Zabadani area of Rural </span><span style="font-family:"">Dam</span><span style="font-family:"">ascus, to reduce fruit drop of sweet cherry. The experiment included 4 foliar applications: T1: control, T2: GA<sub>3</sub> (100 ppm), T3: NAA (20 <span>ppm), T4: (100 ppm GA<sub>3</sub> + 20 ppm NAA). Fruit set and fruit drop pe</span>rcentage, fruiting factor, and yield were recorded. The results showed that treatment with (100 ppm GA<sub>3</sub> + 20 ppm NAA) recorded higher fruit set percentage (73.81% and 75.62%), and fruiting factor (48.38% and 50.04%) respectively</span><span style="font-family:"">;</span><span style="font-family:""> <span>In addition to fruit yield (40.19 and 41.21 kg/tree) for both cultivars, co</span>mpared to the control (9.13, 6.60 kg/tree). Therefore, it can be concluded that GA<sub>3</sub> + NAA treatment reduced Sweet cherry fruit drop better than other treatments, <span>where fruit drop percentage didn’t exceed (63.11% and 62.01%) in both cu</span>ltivars (Bing and Hardy Giant) respectively, compared to the control (80.92% and 80.64%).
基金This project was supported by the Key Laboratory of Organic Synthesis of Jiangsu Province
文摘The title compound, acetic acid-3,5-diacetoxy-2-acetoxymethyl-6-(4-quinoxalin- 2-yl-phenoxy)-tetrahydro-pyran-4-yl-ester 8 (C28H28N2O10, Mr = 552.54), has been synthesized and its crystal structure was determined by X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, a = 10.060(8), b = 5.648(4), c = 24.11(2)A, β = 91.078(10)°, Z = 2, V= 1369.9(19)A^3, Dc = 1.339 g/cm^3,μ(MoKa) = 1.03 cm^-1, F(000) = 580.00, T =. 193.1 Kx-9 θmax = 25.03, (△/σ)max = 0.0000, Flack = -0.0(24), the final R = 0.0680 and wR = 0.140 (w = 1/[0.0016Fo^2 + 1.00000(Fo^2)]/(4Fo^2)) for 3126 observed reflections (1 〉 20(/)). The pyranoid ring adopts chair conformation in the sugar moiety, and all of the acetyl groups are in the e bond of the pyranoid ring, so the sugar moiety is very stable.