Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel s...Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel state information(CSI)image is proposed to improve the localization accuracy.Compared with previous methods of constructing the CSI image,the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival(AoA),the time of arrival(TOA)and the amplitude.We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna,and then merge them to form one RGB image.The localization method has off-line stage and on-line stage.In the off-line stage,the composed three-channel RGB images at training locations are used to train a convolutional neural network(CNN)which has been proved to be efficient in image recognition.In the on-line stage,images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values.The performance of the proposed method is verified with extensive experiments in the representative indoor environment.展开更多
The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the posi...The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.展开更多
In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine ...In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine learning-based technique.In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology,this study proposed an optimized machine learning(ML)based algorithm.Received signal strength indicator(RSSI)data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building.The noise factor is also taken into account,and the signal-to-noise ratio(SNR)value is recorded for every RSSI measurement.This study concludes the examination of reference point accuracy with the modified KNN method(MKNN).MKNN was created to more precisely anticipate the position of the reference point.The findings showed that MKNN outperformed other algorithms in terms of accuracy and complexity.展开更多
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece...Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.展开更多
This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetwork...This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetworks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this researchexplores the integration of multiple sensor modalities (e.g.,Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expandindoor localization methods, particularly in obstructed environments. It addresses the challenge of precise objectlocalization, introducing a novel hybrid DL approach using received signal information (RSI), Received SignalStrength (RSS), and Channel State Information (CSI) data to enhance accuracy and stability. Moreover, thestudy introduces a device-free indoor localization algorithm, offering a significant advancement with potentialobject or individual tracking applications. It recognizes the increasing importance of indoor positioning forlocation-based services. It anticipates future developments while acknowledging challenges such as multipathinterference, noise, data standardization, and scarcity of labeled data. This research contributes significantly toindoor localization technology, offering adaptability, device independence, and multifaceted DL-based solutionsfor real-world challenges and future advancements. Thus, the proposed work addresses challenges in objectlocalization precision and introduces a novel hybrid deep learning approach, contributing to advancing locationcentricservices.While deep learning-based indoor localization techniques have improved accuracy, challenges likedata noise, standardization, and availability of training data persist. However, ongoing developments are expectedto enhance indoor positioning systems to meet real-world demands.展开更多
Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)sig...Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.展开更多
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication...With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication(RSSI)fingerprintbased localization method has obtained much development in both academia and industries.In this work,we introduce an efficient way to reduce the labor-intensive site survey process,which uses an UWB/IMU-assisted fingerprint construction(UAFC)and localization framework based on the principle of Automatic radio map generation scheme(ARMGS)is proposed to replace the traditional manual measurement.To be specific,UWB devices are employed to estimate the coordinates when the collector is moved in a reference point(RP).An anchor self-localization method is investigated to further reduce manual measurement work in a wide and complex environment,which is also a grueling,time-consuming process that is lead to artificial errors.Moreover,the measurements of IMU are incorporated into the UWB localization algorithm and improve the label accuracy in fingerprint.In addition,the weighted k-nearest neighbor(WKNN)algorithm is applied to online localization phase.Finally,filed experiments are carried out and the results confirm the effectiveness of the proposed approach.展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro...Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.展开更多
Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(No...Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(Non-Line-of-Sight),the existing methods for localization indoor Wi-Fi access points based on RSS ranging tend to have lower accuracy as the RSS(Received Signal Strength)is difficult to accurately measure.Therefore,the localization algorithm of indoor Wi-Fi access points based on the signal strength relative relationship and region division is proposed in this paper.The algorithm hierarchically divide the room where the target Wi-Fi AP is located,on the region division line,a modified signal collection device is used to measure RSS in two directions of each reference point.All RSS values are compared and the region where the RSS value has the relative largest signal strength is located as next candidate region.The location coordinate of the target Wi-Fi AP is obtained when the localization region of the target Wi-Fi AP is successively approximated until the candidate region is smaller than the accuracy threshold.There are 360 experiments carried out in this paper with 8 types of Wi-Fi APs including fixed APs and portable APs.The experimental results show that the average localization error of the proposed localization algorithm is 0.30 meters,and the minimum localization error is 0.16 meters,which is significantly higher than the localization accuracy of the existing typical indoor Wi-Fi access point localization methods.展开更多
A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental e...A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.展开更多
In the process of indoor localization,the existence of the non-line of sight(NLOS)error will greatly reduce the localization accuracy.To reduce the impact of this error,a 3 dimensional(3D)indoor localization algorithm...In the process of indoor localization,the existence of the non-line of sight(NLOS)error will greatly reduce the localization accuracy.To reduce the impact of this error,a 3 dimensional(3D)indoor localization algorithm named LMR(LLS-Minimum-Residual)is proposed in this paper.We first estimate the NLOS error and use it to correct the measurement distances,and then calculate the target location with linear least squares(LLS)solution.The final nodes location can be obtained accurately by NLOS error mitigation.Our algorithm can work efficiently in both indoor 2D and 3D environments.The simulation results show that the proposed algorithm has better performance than traditional algorithms and it can significantly improve the localization accuracy.展开更多
The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of R...The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.展开更多
Indoor localization has gained much attention over several decades due to enormous applications. However, the accuracy of indoor localization is hard to improve because the signal propagation has small scale effects w...Indoor localization has gained much attention over several decades due to enormous applications. However, the accuracy of indoor localization is hard to improve because the signal propagation has small scale effects which leads to inaccurate measurements. In this paper, we propose an efficient learning approach that combines grid search based kernel support vector machine and principle component analysis. The proposed approach applies principle component analysis to reduce high dimensional measurements. Then we design a grid search algorithm to optimize the parameters of kernel support vector machine in order to improve the localization accuracy. Experimental results indicate that the proposed approach reduces the localization error and improves the computational efficiency comparing with K-nearest neighbor, Back Propagation Neural Network and Support Vector Machine based methods.展开更多
Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and undergrou...Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.展开更多
With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints...With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nod...For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nodes.Here we study the cooperative positioning of two static nodes,node 1 is placed on the roof of the building and the satellite observation is ideal,node 2 is placed on the indoor windowsill where the occlusion situation is more serious,we mainly study how to locate node 2 with the assistance of node 1.Firstly,the two cooperative nodes are located with pseudo-range single point positioning,and the positioning performance of cooperative node is analyzed,therefore the information of pseudo-range and position of node 1 is obtained.Secondly,the distance between cooperative nodes is obtained by using the baseline method with double-difference carrier phase.Finally,the cooperative location algorithms are studied.The Extended Kalman Filtering(EKF),Unscented Kalman Filtering(UKF)and Particle Filtering(PF)are used to fuse the pseudo-range,ranging information and location information respectively.Due to the mutual influences among the cooperative nodes in cooperative positioning,the EKF,UKF and PF algorithms are improved by resetting the error covariance matrix of the cooperative nodes at each update time.Experimental results show that after being improved,the influence between the cooperative nodes becomes smaller,and the positioning performance of the nodes is better than before.展开更多
For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
基金supported by the National Natural Science Foundation of China (No.61631013)National Key Basic Research Program of China (973 Program) (No. 2013CB329002)National Major Project (NO. 2018ZX03001006003)
文摘Indoor Wi-Fi localization of mobile devices plays a more and more important role along with the rapid growth of location-based services and Wi-Fi mobile devices.In this paper,a new method of constructing the channel state information(CSI)image is proposed to improve the localization accuracy.Compared with previous methods of constructing the CSI image,the new kind of CSI image proposed is able to contain more channel information such as the angle of arrival(AoA),the time of arrival(TOA)and the amplitude.We construct three gray images by using phase differences of different antennas and amplitudes of different subcarriers of one antenna,and then merge them to form one RGB image.The localization method has off-line stage and on-line stage.In the off-line stage,the composed three-channel RGB images at training locations are used to train a convolutional neural network(CNN)which has been proved to be efficient in image recognition.In the on-line stage,images at test locations are fed to the well-trained CNN model and the localization result is the weighted mean value with highest output values.The performance of the proposed method is verified with extensive experiments in the representative indoor environment.
基金the Open Project of Sichuan Provincial Key Laboratory of Philosophy and Social Science for Language Intelligence in Special Education under Grant No.YYZN-2023-4the Ph.D.Fund of Chengdu Technological University under Grant No.2020RC002.
文摘The fingerprinting-based approach using the wireless local area network(WLAN)is widely used for indoor localization.However,the construction of the fingerprint database is quite time-consuming.Especially when the position of the access point(AP)or wall changes,updating the fingerprint database in real-time is difficult.An appropriate indoor localization approach,which has a low implementation cost,excellent real-time performance,and high localization accuracy and fully considers complex indoor environment factors,is preferred in location-based services(LBSs)applications.In this paper,we proposed a fine-grained grid computing(FGGC)model to achieve decimeter-level localization accuracy.Reference points(RPs)are generated in the grid by the FGGC model.Then,the received signal strength(RSS)values at each RP are calculated with the attenuation factors,such as the frequency band,three-dimensional propagation distance,and walls in complex environments.As a result,the fingerprint database can be established automatically without manual measurement,and the efficiency and cost that the FGGC model takes for the fingerprint database are superior to previous methods.The proposed indoor localization approach,which estimates the position step by step from the approximate grid location to the fine-grained location,can achieve higher real-time performance and localization accuracy simultaneously.The mean error of the proposed model is 0.36 m,far lower than that of previous approaches.Thus,the proposed model is feasible to improve the efficiency and accuracy of Wi-Fi indoor localization.It also shows high-accuracy performance with a fast running speed even under a large-size grid.The results indicate that the proposed method can also be suitable for precise marketing,indoor navigation,and emergency rescue.
基金The research will be funded by the Multimedia University,Department of Information Technology,Persiaran Multimedia,63100,Cyberjaya,Selangor,Malaysia.
文摘In situations when the precise position of a machine is unknown,localization becomes crucial.This research focuses on improving the position prediction accuracy over long-range(LoRa)network using an optimized machine learning-based technique.In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology,this study proposed an optimized machine learning(ML)based algorithm.Received signal strength indicator(RSSI)data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building.The noise factor is also taken into account,and the signal-to-noise ratio(SNR)value is recorded for every RSSI measurement.This study concludes the examination of reference point accuracy with the modified KNN method(MKNN).MKNN was created to more precisely anticipate the position of the reference point.The findings showed that MKNN outperformed other algorithms in terms of accuracy and complexity.
基金supported in part by the National Natural Science Foundation of China(U2001213 and 61971191)in part by the Beijing Natural Science Foundation under Grant L182018 and L201011+2 种基金in part by National Key Research and Development Project(2020YFB1807204)in part by the Key project of Natural Science Foundation of Jiangxi Province(20202ACBL202006)in part by the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2020-S321)。
文摘Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms.
基金the Fundamental Research Grant Scheme-FRGS/1/2021/ICT09/MMU/02/1,Ministry of Higher Education,Malaysia.
文摘This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning.It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neuralnetworks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this researchexplores the integration of multiple sensor modalities (e.g.,Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expandindoor localization methods, particularly in obstructed environments. It addresses the challenge of precise objectlocalization, introducing a novel hybrid DL approach using received signal information (RSI), Received SignalStrength (RSS), and Channel State Information (CSI) data to enhance accuracy and stability. Moreover, thestudy introduces a device-free indoor localization algorithm, offering a significant advancement with potentialobject or individual tracking applications. It recognizes the increasing importance of indoor positioning forlocation-based services. It anticipates future developments while acknowledging challenges such as multipathinterference, noise, data standardization, and scarcity of labeled data. This research contributes significantly toindoor localization technology, offering adaptability, device independence, and multifaceted DL-based solutionsfor real-world challenges and future advancements. Thus, the proposed work addresses challenges in objectlocalization precision and introduces a novel hybrid deep learning approach, contributing to advancing locationcentricservices.While deep learning-based indoor localization techniques have improved accuracy, challenges likedata noise, standardization, and availability of training data persist. However, ongoing developments are expectedto enhance indoor positioning systems to meet real-world demands.
文摘Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
文摘With the rapid development of smart phone,the location-based services(LBS)have received great attention in the past decades.Owing to the widespread use of WiFi and Bluetooth devices,Received Signal Strength Indication(RSSI)fingerprintbased localization method has obtained much development in both academia and industries.In this work,we introduce an efficient way to reduce the labor-intensive site survey process,which uses an UWB/IMU-assisted fingerprint construction(UAFC)and localization framework based on the principle of Automatic radio map generation scheme(ARMGS)is proposed to replace the traditional manual measurement.To be specific,UWB devices are employed to estimate the coordinates when the collector is moved in a reference point(RP).An anchor self-localization method is investigated to further reduce manual measurement work in a wide and complex environment,which is also a grueling,time-consuming process that is lead to artificial errors.Moreover,the measurements of IMU are incorporated into the UWB localization algorithm and improve the label accuracy in fingerprint.In addition,the weighted k-nearest neighbor(WKNN)algorithm is applied to online localization phase.Finally,filed experiments are carried out and the results confirm the effectiveness of the proposed approach.
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.
基金supported by the National Natural Science Foundation of China under Grant No.62273083 and No.61973069Natural Science Foundation of Hebei Province under Grant No.F2020501012。
文摘Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.
基金The work presented in this paper is supported by the National Key R&D Program of China(No.2016YFB0801303,2016QY01W0105)the National Natural Science Foundation of China(No.U1636219,61602508,61772549,U1736214,61572052)+1 种基金Plan for Scientific Innovation Talent of Henan Province(No.2018JR0018)the Key Technologies R&D Program of Henan Province(No.162102210032).
文摘Precise localization techniques for indoor Wi-Fi access points(APs)have important application in the security inspection.However,due to the interference of environment factors such as multipath propagation and NLOS(Non-Line-of-Sight),the existing methods for localization indoor Wi-Fi access points based on RSS ranging tend to have lower accuracy as the RSS(Received Signal Strength)is difficult to accurately measure.Therefore,the localization algorithm of indoor Wi-Fi access points based on the signal strength relative relationship and region division is proposed in this paper.The algorithm hierarchically divide the room where the target Wi-Fi AP is located,on the region division line,a modified signal collection device is used to measure RSS in two directions of each reference point.All RSS values are compared and the region where the RSS value has the relative largest signal strength is located as next candidate region.The location coordinate of the target Wi-Fi AP is obtained when the localization region of the target Wi-Fi AP is successively approximated until the candidate region is smaller than the accuracy threshold.There are 360 experiments carried out in this paper with 8 types of Wi-Fi APs including fixed APs and portable APs.The experimental results show that the average localization error of the proposed localization algorithm is 0.30 meters,and the minimum localization error is 0.16 meters,which is significantly higher than the localization accuracy of the existing typical indoor Wi-Fi access point localization methods.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2014AA123103)
文摘A Wi-Fi fingerprinting localization approach has attracted increasing attention in recent years due to the ubiquity of Access Point( AP). However,typical fingerprinting localization methods fail to resist accidental environmental changes,such as AP movement. In order to address this problem,a robust fingerprinting indoor localization method is initiated. In the offline phase,three attributes of Received Signal Strength Indication( RSSI) —average,standard deviation and AP's response rate—are computed to prepare for the subsequent computation. In this way,the underlying location-relevant information can be captured comprehensively. Then in the online phase, a three-step voting scheme-based decision mechanism is demonstrated, detecting and eliminating the part of AP where the signals measured are severely distorted by AP 's movement. In the following localization step,in order to achieve accuracy and efficiency simultaneously,a novel fingerprinting localization algorithm is applied. Bhattacharyya distance is utilized to measure the RSSI distribution distance,thus realizing the optimization of MAximum Overlapping algorithm( MAO). Finally,experimental results are displayed,which demonstrate the effectiveness of our proposed methods in eliminating outliers and attaining relatively higher localization accuracy.
基金supported in part by the foundation of Nanjing University of Posts and Telecommunications (No. NY215164)by the National Experimental Teaching Demonstration Centre Reform Project: Virtual 201106+2 种基金supported by the Key University Science Research Project of Jiangsu Province under Grant (No. 14KJA510003)supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant No. SJCX19_0275supported by the National Natural Science Foundation under grant No. 61771257, No. 61605085 and No.61571233, No.61871232
文摘In the process of indoor localization,the existence of the non-line of sight(NLOS)error will greatly reduce the localization accuracy.To reduce the impact of this error,a 3 dimensional(3D)indoor localization algorithm named LMR(LLS-Minimum-Residual)is proposed in this paper.We first estimate the NLOS error and use it to correct the measurement distances,and then calculate the target location with linear least squares(LLS)solution.The final nodes location can be obtained accurately by NLOS error mitigation.Our algorithm can work efficiently in both indoor 2D and 3D environments.The simulation results show that the proposed algorithm has better performance than traditional algorithms and it can significantly improve the localization accuracy.
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.
基金supported by“the Fundamental Research Funds for the Central Universities No. 2017JBM016”
文摘Indoor localization has gained much attention over several decades due to enormous applications. However, the accuracy of indoor localization is hard to improve because the signal propagation has small scale effects which leads to inaccurate measurements. In this paper, we propose an efficient learning approach that combines grid search based kernel support vector machine and principle component analysis. The proposed approach applies principle component analysis to reduce high dimensional measurements. Then we design a grid search algorithm to optimize the parameters of kernel support vector machine in order to improve the localization accuracy. Experimental results indicate that the proposed approach reduces the localization error and improves the computational efficiency comparing with K-nearest neighbor, Back Propagation Neural Network and Support Vector Machine based methods.
文摘Wireless node localization is one of the key technologies for wireless sensor networks. Outdoor localization can use GPS, AGPS (Assisted Global Positioning System) [6], but in buildings like supermarkets and underground parking, the accuracy of GPS and even AGPS will be greatly reduced. Since Indoor localization requests higher accuracy, using GPS or AGPS for indoor localization is not feasible in the current view. RSSI-based trilateral localization algorithm, due to its low cost, no additional hardware support, and easy-understanding, it becomes the mainstream localization algorithm in wireless sensor networks. With the development of wireless sensor networks and smart devices, the number of WIFI access point in these buildings is increasing, as long as a mobile smart device can detect three or three more known WIFI hotspots’ positions, it would be relatively easy to realize self-localization (Usually WIFI access points locations are fixed). The key problem is that the RSSI value is relatively vulnerable to the influence of the physical environment, causing large calculation error in RSSI-based localization algorithm. The paper proposes an improved RSSI-based algorithm, the experimental results show that compared with original RSSI-based localization algorithms the algorithm improves the localization accuracy and reduces the deviation.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 62001238 and 61901075。
文摘With the rapid growth of the demand for indoor location-based services(LBS), Wi-Fi received signal strength(RSS) fingerprints database has attracted significant attention because it is easy to obtain. The fingerprints algorithm based on convolution neural network(CNN) is often used to improve indoor localization accuracy. However, the number of reference points used for position estimation has significant effects on the positioning accuracy. Meanwhile, it is always selected arbitraily without any guiding standards. As a result, a novel location estimation method based on Jenks natural breaks algorithm(JNBA), which can adaptively choose more reasonable reference points, is proposed in this paper. The output of CNN is processed by JNBA, which can select the number of reference points according to different environments. Then, the location is estimated by weighted K-nearest neighbors(WKNN). Experimental results show that the proposed method has higher positioning accuracy without sacrificing more time cost than the existing indoor localization methods based on CNN.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金This work was financially supported by National Major SpecialScience and Technology (No. GFZX0301040115)the National Natural Science Foundationof China (No. 61301094, No. 61571188)the Construct Program of the Key Discipline inHunan Province, China, the Aid program for Science and Technology Innovative ResearchTeam in Higher Educational Institute of Hunan Province, and the Planned Science andTechnology Project of Loudi City, Hunan Province, China.
文摘For situations such as indoor and underground parking lots in which satellite signals are obstructed,GNSS cooperative positioning can be used to achieve highprecision positioning with the assistance of cooperative nodes.Here we study the cooperative positioning of two static nodes,node 1 is placed on the roof of the building and the satellite observation is ideal,node 2 is placed on the indoor windowsill where the occlusion situation is more serious,we mainly study how to locate node 2 with the assistance of node 1.Firstly,the two cooperative nodes are located with pseudo-range single point positioning,and the positioning performance of cooperative node is analyzed,therefore the information of pseudo-range and position of node 1 is obtained.Secondly,the distance between cooperative nodes is obtained by using the baseline method with double-difference carrier phase.Finally,the cooperative location algorithms are studied.The Extended Kalman Filtering(EKF),Unscented Kalman Filtering(UKF)and Particle Filtering(PF)are used to fuse the pseudo-range,ranging information and location information respectively.Due to the mutual influences among the cooperative nodes in cooperative positioning,the EKF,UKF and PF algorithms are improved by resetting the error covariance matrix of the cooperative nodes at each update time.Experimental results show that after being improved,the influence between the cooperative nodes becomes smaller,and the positioning performance of the nodes is better than before.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.