The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor l...The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.展开更多
In order to implement the optimal design of the indoor thermal comfort based on the numerical modeling method, the numerical calculation platform is combined seamlessly with the data-processing platform, and an intera...In order to implement the optimal design of the indoor thermal comfort based on the numerical modeling method, the numerical calculation platform is combined seamlessly with the data-processing platform, and an interactive numerical calculation platform which includes the functions of numerical simulation and optimization is established. The artificial neural network (ANN) and the greedy strategy are introduced into the hill-climbing pattern heuristic search process, and the optimizing search direction can be predicted by using small samples; when searching along the direction using the greedy strategy, the optimal values can be quickly approached. Therefore, excessive external calling of the numerical modeling process can be avoided, and the optimization time is decreased obviously. The experimental results indicate that the satisfied output parameters of air conditioning can be quickly given out based on the interactive numerical calculation platform and the improved search method, and the optimization for indoor thermal comfort can be completed.展开更多
Increasing incidents of indoor air quality(IAQ) related complaints lead us to the fact that IAQ has become a significant occupational health and environmental issue. However, how to effectively evaluate IAQ under diff...Increasing incidents of indoor air quality(IAQ) related complaints lead us to the fact that IAQ has become a significant occupational health and environmental issue. However, how to effectively evaluate IAQ under different scale of multiple indicators is still a challenge. The traditional single-indicator method is subjected to uncertainties in assessing IAQ due to different subjectivity on good or bad quality and scalar differences of data set. In this study, a multilevel integrated weighted average IAQ method including initial walking through assessment(IWA) and two-layers weighted average method are developed and applied to evaluate IAQ of the laboratory building at the University of Regina in Canada. Some important chemical parameters related to IAQ in terms of volatile organic compounds(VOCs), methanol(HCHO), carbon dioxide(CO2), and carbon monoxide(CO) are evaluated based on 5 months continuous monitoring data. The new integrated assessment result can not only indicates the risk of an individual parameter, but also able to quantify the overall IAQ risk on the sampling site. Finally, some recommendations based on the result are proposed to address sustainable IAQ practices in the sampling area.展开更多
文摘The task of indoor visual localization, utilizing camera visual information for user pose calculation, was a core component of Augmented Reality (AR) and Simultaneous Localization and Mapping (SLAM). Existing indoor localization technologies generally used scene-specific 3D representations or were trained on specific datasets, making it challenging to balance accuracy and cost when applied to new scenes. Addressing this issue, this paper proposed a universal indoor visual localization method based on efficient image retrieval. Initially, a Multi-Layer Perceptron (MLP) was employed to aggregate features from intermediate layers of a convolutional neural network, obtaining a global representation of the image. This approach ensured accurate and rapid retrieval of reference images. Subsequently, a new mechanism using Random Sample Consensus (RANSAC) was designed to resolve relative pose ambiguity caused by the essential matrix decomposition based on the five-point method. Finally, the absolute pose of the queried user image was computed, thereby achieving indoor user pose estimation. The proposed indoor localization method was characterized by its simplicity, flexibility, and excellent cross-scene generalization. Experimental results demonstrated a positioning error of 0.09 m and 2.14° on the 7Scenes dataset, and 0.15 m and 6.37° on the 12Scenes dataset. These results convincingly illustrated the outstanding performance of the proposed indoor localization method.
基金Sponsored by the National Program"973"Project (2005CB623906)
文摘In order to implement the optimal design of the indoor thermal comfort based on the numerical modeling method, the numerical calculation platform is combined seamlessly with the data-processing platform, and an interactive numerical calculation platform which includes the functions of numerical simulation and optimization is established. The artificial neural network (ANN) and the greedy strategy are introduced into the hill-climbing pattern heuristic search process, and the optimizing search direction can be predicted by using small samples; when searching along the direction using the greedy strategy, the optimal values can be quickly approached. Therefore, excessive external calling of the numerical modeling process can be avoided, and the optimization time is decreased obviously. The experimental results indicate that the satisfied output parameters of air conditioning can be quickly given out based on the interactive numerical calculation platform and the improved search method, and the optimization for indoor thermal comfort can be completed.
文摘Increasing incidents of indoor air quality(IAQ) related complaints lead us to the fact that IAQ has become a significant occupational health and environmental issue. However, how to effectively evaluate IAQ under different scale of multiple indicators is still a challenge. The traditional single-indicator method is subjected to uncertainties in assessing IAQ due to different subjectivity on good or bad quality and scalar differences of data set. In this study, a multilevel integrated weighted average IAQ method including initial walking through assessment(IWA) and two-layers weighted average method are developed and applied to evaluate IAQ of the laboratory building at the University of Regina in Canada. Some important chemical parameters related to IAQ in terms of volatile organic compounds(VOCs), methanol(HCHO), carbon dioxide(CO2), and carbon monoxide(CO) are evaluated based on 5 months continuous monitoring data. The new integrated assessment result can not only indicates the risk of an individual parameter, but also able to quantify the overall IAQ risk on the sampling site. Finally, some recommendations based on the result are proposed to address sustainable IAQ practices in the sampling area.