For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be colle...For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.展开更多
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i...Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.展开更多
To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robu...To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity.The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned.The real-time online calibration method mitigates the impact of device heterogeneity largely.Without any time-consuming deep learning retraining process,CALoc online only needs 0.11 s.The effectiveness and efficiency of CALoc are verified by realistic experiments.The results show that compared to the traditional algorithms,a significant performance gain is achieved and that it achieves better positioning accuracy with a 19%improvement.展开更多
As a promising solution to efficiently achieving fiber to the home (FTTH), Ethernet passive optical network (EPON) is currently improved to provide intercommunication among customers, together with normal traffic ...As a promising solution to efficiently achieving fiber to the home (FTTH), Ethernet passive optical network (EPON) is currently improved to provide intercommunication among customers, together with normal traffic delivery, via optical local area network emulation. It is a new research direction and expected to enhance the normal EPON performances. The purpose of this article is to review the state-of -the-art solutions to emulating optical local area networks (OLANs) over EPON. We discuss the major problems involved, e.g., network architecture, control mechanisms, and other potential enhancements. We also outline areas for future researches.展开更多
针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过...针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法.展开更多
In a Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) based Wireless Local Area Network (WLAN) system, both Access Points (APs) and Mobile Termi-nals (MTs) are configured with mu...In a Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) based Wireless Local Area Network (WLAN) system, both Access Points (APs) and Mobile Termi-nals (MTs) are configured with multiple antennas, to make novel indoor geo-location method possible. In this paper, we presented a novel Least Square Support Vector Machine (LS-SVM) based data fusion algorithm to fuse signal strength measurements for indoor geo-location using only a single AP with MIMO arrays. We evaluate our proposed algorithms under indoor environments by MATLAB simulations. Simulation results show that our MIMO-based algorithm is superior to conventional least square algorithm.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61101122)the National High Technology Research and Development Program of China(Grant No.2012AA120802)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2012ZX03004-003)
文摘For indoor location estimation based on received signal strength( RSS) in wireless local area networks( WLAN),in order to reduce the influence of noise on the positioning accuracy,a large number of RSS should be collected in offline phase. Therefore,collecting training data with positioning information is time consuming which becomes the bottleneck of WLAN indoor localization. In this paper,the traditional semisupervised learning method based on k-NN and ε-NN graph for reducing collection workload of offline phase are analyzed,and the result shows that the k-NN or ε-NN graph are sensitive to data noise,which limit the performance of semi-supervised learning WLAN indoor localization system. Aiming at the above problem,it proposes a l1-graph-algorithm-based semi-supervised learning( LG-SSL) indoor localization method in which the graph is built by l1-norm algorithm. In our system,it firstly labels the unlabeled data using LG-SSL and labeled data to build the Radio Map in offline training phase,and then uses LG-SSL to estimate user's location in online phase. Extensive experimental results show that,benefit from the robustness to noise and sparsity ofl1-graph,LG-SSL exhibits superior performance by effectively reducing the collection workload in offline phase and improving localization accuracy in online phase.
文摘Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM.
基金The National Key Research and Development Program of China(No.2018YFB1802400)the National Natural Science Foundation of China(No.61571123)the Research Fund of National M obile Communications Research Laboratory,Southeast University(No.2020A03)
文摘To solve the problem of variations in radio frequency characteristics among different devices,transfer learning is applied to transform device diversity to domain adaptation in the indoor localization algorithm.A robust indoor localization algorithm based on the aligned fingerprints and ensemble learning called correlation alignment for localization(CALoc)is proposed with low computational complexity.The second-order statistical properties of fingerprints in the offline and online phase are needed to be aligned.The real-time online calibration method mitigates the impact of device heterogeneity largely.Without any time-consuming deep learning retraining process,CALoc online only needs 0.11 s.The effectiveness and efficiency of CALoc are verified by realistic experiments.The results show that compared to the traditional algorithms,a significant performance gain is achieved and that it achieves better positioning accuracy with a 19%improvement.
基金the National Science Fund for Distinguished Young Scholars(Grant No.60725104)the National Basic Research Program of China(Grant No.2007CB310706)+2 种基金the National High Technology Research and Development Program of China(Grant Nos.2007AA01Z246 and 2007AA01Z227)the National Natural Science Foundation of China(Grant No.60672045)the Research Fund for the Doctoral Program of Higher Education(Grant No.20060614018)
文摘As a promising solution to efficiently achieving fiber to the home (FTTH), Ethernet passive optical network (EPON) is currently improved to provide intercommunication among customers, together with normal traffic delivery, via optical local area network emulation. It is a new research direction and expected to enhance the normal EPON performances. The purpose of this article is to review the state-of -the-art solutions to emulating optical local area networks (OLANs) over EPON. We discuss the major problems involved, e.g., network architecture, control mechanisms, and other potential enhancements. We also outline areas for future researches.
文摘针对接收信号强度(received signal strength,RSS)的时变性降低WLAN室内定位精度的问题,提出了一种基于核直接判别分析(kernel direct discriminant analysis,KDDA)和混洗蛙跳最小二乘支持向量回归机(SFLA-LSSVR)的定位算法,该算法通过核函数策略将采集的各接入点(access point,AP)的RSS信号映射到非线性领域,有效提取了非线性定位特征,重组定位信息,去除冗余定位特征和噪声;然后采用LSSVR算法构建指纹点定位特征数据与物理位置的映射关系模型,采用SFLA算法优化该关系模型的参数,并用该关系模型对测试点的位置进行回归预测.实验结果表明:提出算法在相同的采样次数下的定位精度明显优于WKNN,ANN,LSSVR算法,并且在相同的定位精度下,采样次数较大减少,是一种性能良好的WLAN室内定位算法.
文摘In a Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) based Wireless Local Area Network (WLAN) system, both Access Points (APs) and Mobile Termi-nals (MTs) are configured with multiple antennas, to make novel indoor geo-location method possible. In this paper, we presented a novel Least Square Support Vector Machine (LS-SVM) based data fusion algorithm to fuse signal strength measurements for indoor geo-location using only a single AP with MIMO arrays. We evaluate our proposed algorithms under indoor environments by MATLAB simulations. Simulation results show that our MIMO-based algorithm is superior to conventional least square algorithm.