Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disord...Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.展开更多
Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal ax...Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal axes symmetry,respectively.We then provide a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain induced polarization methods.Analogous to the mean resistivity,we propose a formulation for deriving the mean polarizability.We also present a three-dimensional finite element algorithm for modeling the direct current resistivity and time-domain induced polarization using an unstructured tetrahedral grid.Finally,we provide the apparent resistivity and apparent chargeability curves of a tilted,transversely isotropic medium with diff erent angles,respectively.The subsequent results illustrate the anisotropy paradoxes of direct current resistivity and time-domain induced polarization.展开更多
Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic ...Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.展开更多
Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed imm...Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed immediately after AtDCS,and the long-term effect of AtDCS remains unknown.In this study,we treated 26-week-old mouse models of Alzheimer’s disease in the preclinical stage with 10 AtDCS sessions or sham stimulation.The Morris water maze,novel object recognition task,and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice.Western blotting was used to detect the relevant protein content.Morphological changes were observed using immunohistochemistry and immunofluorescence staining.Six weeks after treatment,the mice subjected to AtDCS sessions had a shorter escape latency,a shorter path length,more platform area crossings,and spent more time in the target quadrant than sham-stimulated mice.The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice.Furthermore,AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein,a marker of astrocyte activation,and increased the level of neuronal marker NeuN in hippocampal tissue.These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer’s disease in the preclinical stage,with improvements that last for at least 6 weeks.展开更多
目的探讨经颅直流电刺激(tDCS)联合感知水平唤醒对颅脑损伤意识障碍(DOC)患者预后的影响。方法选取河南科技大学第一附属医院2018年9月至2020年9月期间收治的113例颅脑损伤DOC患者作为研究对象,按随机数字表法分为对照组和观察组,对照...目的探讨经颅直流电刺激(tDCS)联合感知水平唤醒对颅脑损伤意识障碍(DOC)患者预后的影响。方法选取河南科技大学第一附属医院2018年9月至2020年9月期间收治的113例颅脑损伤DOC患者作为研究对象,按随机数字表法分为对照组和观察组,对照组56例给予感知水平唤醒干预,观察组57例给予感知水平唤醒干预联合tDCS,对比两组患者的意识水平、神经功能和诱发动作电位潜伏期。结果观察组干预后的JFK昏迷恢复量表(The JFK Coma Recovery Scale-Revise,CRS-R)各项得分均高于对照组(P<0.05),观察组干预后的格拉斯哥昏迷量表(GCS)得分、脑电图(EEG)得分均高于对照组,功能障碍评分(DFS)得分低于对照组(P<0.05),双耳潜伏期(PL)的Ⅰ波、Ⅲ波、Ⅴ波均低于对照组(P<0.05)。结论基于感知水平的听觉诱导唤醒干预可通过缩短颅脑损伤DOC患者的动作电位潜伏期进而改善神经功能,有助于患者觉醒。展开更多
文摘Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.
基金the special funding of Guiyang science and technology bureau and Guiyang University[GYUKY-[2021]]the National Key Research and Development Program of China-Geophysical Comprehensive Exploration and Information Extraction of Deep Mineral Resources(2016YFC0600505)the National K&D Program(2018YFC1504901,2018YFC1504904).
文摘Based on an analytical solution for the current point source in an anisotropic half-space,we study the apparent resistivity and apparent chargeability of a transversely isotropic medium with vertical and horizontal axes symmetry,respectively.We then provide a simple derivation of the anisotropy paradoxes in direct current resistivity and time-domain induced polarization methods.Analogous to the mean resistivity,we propose a formulation for deriving the mean polarizability.We also present a three-dimensional finite element algorithm for modeling the direct current resistivity and time-domain induced polarization using an unstructured tetrahedral grid.Finally,we provide the apparent resistivity and apparent chargeability curves of a tilted,transversely isotropic medium with diff erent angles,respectively.The subsequent results illustrate the anisotropy paradoxes of direct current resistivity and time-domain induced polarization.
基金supported by the National Natural Science Foundation of China,No.31960120Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(both to ZW).
文摘Parkinson’s disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta.Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson’s disease.The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson’s disease,which could substantially alleviate the symptoms of Parkinson’s disease in clinical practice.However,ethical issues and tumor formation were limitations of its clinical application.Induced pluripotent stem cells can be acquired without sacrificing human embryos,which eliminates the huge ethical barriers of human stem cell therapy.Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons,without the need for intermediate proliferation states,thus avoiding issues of immune rejection and tumor formation.Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson’s disease.However,there are also ethical concerns and the risk of tumor formation that need to be addressed.This review highlights the current application status of cell reprogramming in the treatment of Parkinson’s disease,focusing on the use of induced pluripotent stem cells in cell replacement therapy,including preclinical animal models and progress in clinical research.The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson’s disease,as well as the controversy surrounding in vivo reprogramming.These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson’s disease.
基金supported by the National Natural Science Foundation of China,No.31971287(to XYW)the Advanced Interdisciplinary Studies Foundation of School of Basic Medical Science,Army Medical University of China,No.2018JCQY07(to HZW).
文摘Anodal transcranial direct current stimulation(AtDCS)has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer’s disease in the preclinical stage.However,this enhancement was only observed immediately after AtDCS,and the long-term effect of AtDCS remains unknown.In this study,we treated 26-week-old mouse models of Alzheimer’s disease in the preclinical stage with 10 AtDCS sessions or sham stimulation.The Morris water maze,novel object recognition task,and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice.Western blotting was used to detect the relevant protein content.Morphological changes were observed using immunohistochemistry and immunofluorescence staining.Six weeks after treatment,the mice subjected to AtDCS sessions had a shorter escape latency,a shorter path length,more platform area crossings,and spent more time in the target quadrant than sham-stimulated mice.The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice.Furthermore,AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein,a marker of astrocyte activation,and increased the level of neuronal marker NeuN in hippocampal tissue.These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer’s disease in the preclinical stage,with improvements that last for at least 6 weeks.
文摘目的探讨经颅直流电刺激(tDCS)联合感知水平唤醒对颅脑损伤意识障碍(DOC)患者预后的影响。方法选取河南科技大学第一附属医院2018年9月至2020年9月期间收治的113例颅脑损伤DOC患者作为研究对象,按随机数字表法分为对照组和观察组,对照组56例给予感知水平唤醒干预,观察组57例给予感知水平唤醒干预联合tDCS,对比两组患者的意识水平、神经功能和诱发动作电位潜伏期。结果观察组干预后的JFK昏迷恢复量表(The JFK Coma Recovery Scale-Revise,CRS-R)各项得分均高于对照组(P<0.05),观察组干预后的格拉斯哥昏迷量表(GCS)得分、脑电图(EEG)得分均高于对照组,功能障碍评分(DFS)得分低于对照组(P<0.05),双耳潜伏期(PL)的Ⅰ波、Ⅲ波、Ⅴ波均低于对照组(P<0.05)。结论基于感知水平的听觉诱导唤醒干预可通过缩短颅脑损伤DOC患者的动作电位潜伏期进而改善神经功能,有助于患者觉醒。