In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such...The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.展开更多
Traditional two-dimensional(2D) complex resistivity forward modeling is based on Poisson's equation but spectral induced polarization(SIP) data are the coproducts of the induced polarization(IP) and the electro...Traditional two-dimensional(2D) complex resistivity forward modeling is based on Poisson's equation but spectral induced polarization(SIP) data are the coproducts of the induced polarization(IP) and the electromagnetic induction(EMI) effects.This is especially true under high frequencies,where the EMI effect can exceed the IP effect.2D inversion that only considers the IP effect reduces the reliability of the inversion data.In this paper,we derive differential equations using Maxwell's equations.With the introduction of the Cole-Cole model,we use the finite-element method to conduct2 D SIP forward modeling that considers the EMI and IP effects simultaneously.The data-space Occam method,in which different constraints to the model smoothness and parametric boundaries are introduced,is then used to simultaneously obtain the four parameters of the Cole-Cole model using multi-array electric field data.This approach not only improves the stability of the inversion but also significantly reduces the solution ambiguity.To improve the computational efficiency,message passing interface programming was used to accelerate the 2D SIP forward modeling and inversion.Synthetic datasets were tested using both serial and parallel algorithms,and the tests suggest that the proposed parallel algorithm is robust and efficient.展开更多
The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO...The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO2),gold and graphene on terahertz band is designed.By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave,the EIR effect of the structure is discussed,and it can be found that SiO2 is a kind of excellent dielectric material.The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave.Therefore,such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.展开更多
In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct expl...In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.展开更多
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i...The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.展开更多
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
基金financially supported by the National Natural Science Foundation of China(No.41204055,41164003,and 41104074)Opening Project(No.SMIL-2014-06) of Hubei Subsurface Multi-scale Imaging Lab(SMIL),China University of Geosciences(Wuhan)
文摘The conventional finite-element(FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization(IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
基金jointly sponsored by the National Natural Science Foundation of China(Grant No.41374078)the Geological Survey Projects of the Ministry of Land and Resources of China(Grant Nos.12120113086100 and 12120113101300)Beijing Higher Education Young Elite Teacher Project
文摘Traditional two-dimensional(2D) complex resistivity forward modeling is based on Poisson's equation but spectral induced polarization(SIP) data are the coproducts of the induced polarization(IP) and the electromagnetic induction(EMI) effects.This is especially true under high frequencies,where the EMI effect can exceed the IP effect.2D inversion that only considers the IP effect reduces the reliability of the inversion data.In this paper,we derive differential equations using Maxwell's equations.With the introduction of the Cole-Cole model,we use the finite-element method to conduct2 D SIP forward modeling that considers the EMI and IP effects simultaneously.The data-space Occam method,in which different constraints to the model smoothness and parametric boundaries are introduced,is then used to simultaneously obtain the four parameters of the Cole-Cole model using multi-array electric field data.This approach not only improves the stability of the inversion but also significantly reduces the solution ambiguity.To improve the computational efficiency,message passing interface programming was used to accelerate the 2D SIP forward modeling and inversion.Synthetic datasets were tested using both serial and parallel algorithms,and the tests suggest that the proposed parallel algorithm is robust and efficient.
基金Research Project of Anhui Province Education Department(No.KJ2020A0684)Innovation and Entrepreneurship Training Program for College Students(Nos.S201910375072,201910375050,201910375052,202010375030)。
文摘The electromagnetically induced reflection(EIR)effect of graphene metamaterials has been investigated by finite difference time domain(FDTD)method.In this study,a metamaterial sandwich structure composed of silica(SiO2),gold and graphene on terahertz band is designed.By changing the width of the two ribbons of graphene length and the incident angle of electromagnetic wave,the EIR effect of the structure is discussed,and it can be found that SiO2 is a kind of excellent dielectric material.The simulation results show that graphene metamaterial is not sensitive to polarized incident electromagnetic wave.Therefore,such EIR phenomena as insensitive polarization and large incident angle can be applied to optical communication filters and terahertz devices.
基金financially supported by the Thirteenth Five-Year-Plan Major Project "Marine Shale Gas Exploration and Evaluation over Laifengxianfeng and Hefeng Block"(No.2016ZX05034004-004)China Huadian Engineering Co.,LTD(No.CHEC-KJ-2014-Z10)
文摘In an effort to reduce the shale gas exploration risks and costs, we applied the wide-field electromagnetic method (WFEM), because of its strong anti-interference capability, high resolution, ability to conduct exploration at large depths, and high efficiency, to the Bayan Syncline in the South Huayuan block, Hunan Province. We collected rock samples and analyzed their resistivity and induced polarization (IP) and built A series of two-dimensional models for geological conditions to investigate the applicability of WFEM to different geological structures. We also analyzed the correlation between TOC of shale and the resistivity and IP ratio to determine the threshold for identifying target formations. We used WFEM to identify the underground structures and determine the distribution, depth, and thickness of the target strata. Resistivity, IP, and total organic carbon were used to evaluate the shale gas prospects and select favorable areas (sweet spots) for exploration and development. Subsequently, drilling in these areas proved the applicability of WFEM in shale gas exploration.
基金Projects(41604117,41204054)supported by the National Natural Science Foundation of ChinaProjects(20110490149,2015M580700)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2015zzts064)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(16B147)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results.