Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target ...Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.展开更多
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en...AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.展开更多
The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement diso...The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).展开更多
Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and t...Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and travels to the lung,it would展开更多
DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-bu...DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.展开更多
Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin ...Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.展开更多
Perinatal complications,such as asphyxia,can cause brain injuries that are often associated with subsequent neurological deficits,such as cerebral palsy or mental retardation.The mechanisms of perinatal brain injury a...Perinatal complications,such as asphyxia,can cause brain injuries that are often associated with subsequent neurological deficits,such as cerebral palsy or mental retardation.The mechanisms of perinatal brain injury are not fully understood,but mitochondria play a prominent role not only due to their central function in metabolism but also because many proteins with apoptosis-related functions are located in the mitochondrion.Among these proteins,apoptosis-inducing factor has already been shown to be an important factor involved in neuronal cell death upon hypoxia-ischemia,but a better understanding of the mechanisms behind these processes is required for the development of more effective treatments during the early stages of perinatal brain injury.In this review,we focus on the molecular mechanisms of hypoxic-ischemic encephalopathy,specifically on the importance of apoptosis-inducing factor.The relevance of apoptosis-inducing factor is based not only because it participates in the caspase-independent apoptotic pathway but also because it plays a crucial role in mitochondrial energetic functionality,especially with regard to the maintenance of electron transport during oxidative phosphorylation and in oxidative stress,acting as a free radical scavenger.We also discuss all the different apoptosis-inducing factor isoforms discovered,focusing especially on apoptosis-inducing factor 2,which is only expressed in the brain and the functions of which are starting now to be clarified.Finally,we summarized the interaction of apoptosis-inducing factor with several proteins that are crucial for both apoptosis-inducing factor functions(prosurvival and pro-apoptotic)and that are highly important in order to develop promising therapeutic targets for improving outcomes after perinatal brain injury.展开更多
Enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play a significant role in the regulation of glycolysis in cancer cells as well as its proliferation and survival. The expres...Enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play a significant role in the regulation of glycolysis in cancer cells as well as its proliferation and survival. The expression of these mRNAs is increased in malignant tumors and strongly induced in different cancer cell lines by hypoxia inducible factor (HIF) through active HIF binding sites in promoter region of PFKFB-4 and PFKFB-3 genes. Moreover, the expression and hypoxia responsibility of PFKFB-4 and PFKFB-3 was also shown for pancreatic (Panc1, PSN-1, and MIA PaCa-2) as well as gastric (MKN45 and NUGC3) cancer cells. At the same time, their basal expression level and hypoxia responsiveness vary in the different cells studied: the highest level of PFKFB-4 protein expression was found in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with a stronger response to hypoxia in the pancreatic cancer cell line. Overexpression of different PFKFB in pancreatic and gastric cancer cells under hypoxic condition is correlated with enhanced expression of vascular endothelial growth factor (VEGF) and Glut1 mRNA as well as with increased level of HIF-1α protein. Increased expression of different PFKFB genes was also demonstrated in gastric, lung, breast, and colon cancers as compared to corresponding non-malignant tissue counterparts from the same patients, being more robust in the breast and lung tumors. Moreover, induction of PFKFB-4 mRNA expression in the breast and lung cancers is stronger than PFKFB-3 mRNA. The levels of both PFKFB-4 and PFKFB-3 proteins in non-malignant gastric and colon tissues were more pronounced than in the non-malignant breast and lung tissues. It is interesting to note that Panc1 and PSN-1 cells transfected with dominant/negative PFKFB-3 (dnPFKFB-3) showed a lower level of endogenous PFKFB-3, PFKFB-4, and VEGF mRNA expressions as well as a decreased proliferation rate of these cells. Moreover, a similar effect had dnPFKFB-4. In conclusion, there is strong evidence that PFKFB-4 and PFKFB-3 isoenzymes are induced under hypoxia in pancreatic and other cancer cell lines, are overexpressed in gastric, colon, lung, and breast malignant tumors and undergo changes in their metabolism that contribute to the proliferation and survival of cancer cells. Thus, targeting these PFKFB may therefore present new therapeutic opportunities.展开更多
The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translatio...The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translational regulation by hy-poxia.HIF-3α and HIF-1α are two similar but distinct basic helix-loop-helix-PAS proteins,which have been postulatedto activate hypoxia responsive genes in response to hypoxia.Here,we used quantitative real time RT-PCR and immu-noblotting to determine the activation of HIF-3α vs.HIF-1α by hypoxia.HIF-3α was strongly induced by hypoxia(1%O_2)both at the level of protein and mRNA due to an increase in protein stability and transcriptional activation,whereasHIF-1α protein and mRNA levels enhanced transiently and then decreased because of a reduction in its mRNA stabilityin A549 cells,as measured on mRNA and protein levels.Interestingly,HIF-3α and HIF-1α exhibited strikingly similarresponses to a variety of activating or inhibitory pharmacological agents.These results demonstrate that HIF-3α is ex-pressed abundantly in lung epithelial cells,and that the transcriptional induction of HIF-3α plays an important role in theresponse to hypoxia in vitro.Our findings suggest that HIF-3α,as a member of the HIF system,is complementary ratherthan redundant to HIF-1α induction in protection against hypoxic damage in alveolar epithelial cells.展开更多
There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated f...There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism.An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival,as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival.Based on the data that serum fatty acid synthase(FASN),also known as oncoantigen 519,is elevated in patients with certain types of cancer,its serum level was proposed as a marker of neoplasia.This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma(PDAC),the most common pancreatic neoplasm,characterized by high mortality.We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism.Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer.In particular,FASN is a viable candidate for indicator of pathologic state,marker of neoplasia,as well as,pharmacological treatment target in pancreatic cancer.Recent research showed that,in addition to lipogenesis,certain cancer cells can use fatty acids from circulation,derived from diet(chylomicrons),synthesized in liver,or released from adipose tissue for their growth.Thus,the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.展开更多
Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves...Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of o and 13 subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCI in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α- dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a)in mammary epithelial cells, whereas STATS phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.展开更多
Although multiple advances have been made in systemic therapy for renal cell carcinoma(RCC),metastatic RCC remains incurable.In the current review,we focus on the underlying biology of RCC and plausible mechanisms of ...Although multiple advances have been made in systemic therapy for renal cell carcinoma(RCC),metastatic RCC remains incurable.In the current review,we focus on the underlying biology of RCC and plausible mechanisms of metastasis.We further outline evolving strategies to combat metastasis through adjuvant therapy.Finally,we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.展开更多
Objective: To evaluate the expression and correlation of hypoxia inducible factor la (HIF-la) and vascular endothelial growth factor (VEGF) and Survivin proteins in biopsy specimens of esophageal squamous cell ca...Objective: To evaluate the expression and correlation of hypoxia inducible factor la (HIF-la) and vascular endothelial growth factor (VEGF) and Survivin proteins in biopsy specimens of esophageal squamous cell carcinoma (ESCC), and then determine whether the levels of expression of these proteins could predict the clinical effectiveness of radiotherapy in individual cancers. Methods: The expressions of HIF-IQ, VEGF and Survivin were shown by S-P immunohistochemical staining method in biopsy specimens of ESCC, which were obtained endoscopically from 50 patients before radiotherapy, and 10 cases of normal esophageal tissue. Results: The positive expression rates of H IF-IQ, VEGF and Survivin were 68%, 74% and 72% in ESCC respectively. However, the three tumor markers had negative expressions in normal esophageal tissue. The positive rate of HIF-IQ was positively correlated with VEGF and Survivin proteins. The positive rates of HIF-IQ and Survivin were closely related to the clinical stage, radiotherapy effectiveness and survival, otherwise, the expression of HIF-IQ was closely related to distant metastasis; both of them were no correlation with the differentiation degree of tumor. The effective rates of radiotherapy and mean survival periods of those cases with positive and negative expressions of HIF-IQ were 8.8%, 10 months and 81.25%, 25 months, respectively. The one, two, and three years survival rates of patients with positive and negative expressions of HIF-IQ were 38.2%, 5.9%, 2.9%, and 81.3%, 54.2%, 15.8%, respectively (P = 0.001). Patients with HIF-IQ positive expression obviously survived less than those with negative expression and the difference was significant. The expression of VEGF was only related to the distant metastasis. Conclusion: Over expressions of HIF-IQ, VEGF and Survivin were found in ESCC. The positive rate of HIF-IQ was positively correlated with VEGF and Survivin proteins. The expression of HIF-IQ may serve as an important parameter in evaluating response for radiotherapy and prognosis of ESCC. It may play an important role by up-regulating the transcription of VEGF and Survivin genes.展开更多
Objective To study the effect of γ-interferon (IFNγ), tumor necrosis factor related apoptosis inducing ligand (TRAIL), and cisplatin or etoposide induced apoptosis in human neuroblastoma cell line SH-SY5Y and it...Objective To study the effect of γ-interferon (IFNγ), tumor necrosis factor related apoptosis inducing ligand (TRAIL), and cisplatin or etoposide induced apoptosis in human neuroblastoma cell line SH-SY5Y and its possible molecular mechanisms. Methods The expressions of Caspase 8 mRNA and protein were detected with RT-PCR and Western blot analysis. The effects of IFNγ, TRAIL, IFNγ + TRAIL, IFNγ + Caspase 8 inhibitor + TRAIL, IFNγ + cisplatin + TRAIL, and IFNγ + etoposide + TRAIL on the growth and apoptosis of SH-SY5Y cells were detected with the methods of MTT and flow cytometry. The relative Caspase 8 activity was measured with colorimetric assay. Results Caspase 8 was undetectable in SH-SY5Y cells but an increased expression of Caspase 8 mRNA and protein was found after treatment with IFNγ. SH-SY5Y ceils themselves were not sensitive to TRAIL, but those expressing Caspase 8 after treatment with IFNγ were. The killing effect of TRAIL on SH-SY5Y cells expressing Caspase 8 was depressed by Caspase 8 inhibitor. Cisplatin and etoposide could enhance the sensitivity of TRAIL on SH-SY5Y cells. The relative Caspase 8 activity of SH-SY5Y cells in IFNγ + TRAIL group was significantly higher than those of control group, IFNγ group, TRAIL group, and inhibitor group ( P 〈 0. 01 ). There was no significant difference among IFNγ + TRAIL group, IFNγ + cisplatin + TRAIL group, and IFNγ + etoposide + TRAIL group. Conclusions IFNγ could sensitize SH-SY5Y cells to TRAIL-induced apoptosis and this may be realized by the up-regulation of Caspase 8. Cisplatin and etoposide could enhance the killing effect of TRAIL on SH-SY5Y cells.展开更多
The cornea is an avascular,transparent tissue that is essential for visual function.Any disturbance to the corneal transparency will result in a severe vision loss.Due to the avascular nature,the cornea acquires most ...The cornea is an avascular,transparent tissue that is essential for visual function.Any disturbance to the corneal transparency will result in a severe vision loss.Due to the avascular nature,the cornea acquires most of the oxygen supply directly or indirectly from the atmosphere.Corneal tissue hypoxia has been noticed to influence the structure and function of the cornea for decades.The etiology of hypoxia of the cornea is distinct from the rest of the body,mainly due to the separation of cornea from the atmosphere,such as prolonged contact lens wearing or closed eyes.Corneal hypoxia can also be found in corneal inflammation and injury when a higher oxygen requirement exceeds the oxygen supply.Systemic hypoxic state during lung diseases or high altitude also leads to corneal hypoxia when a second oxygen consumption route from aqueous humor gets blocked.Hypoxia affects the cornea in multiple aspects,including disturbance of the epithelium barrier function,corneal edema due to endothelial dysfunction and metabolism changes in the stroma,and thinning of corneal stroma.Cornea has also evolved mechanisms to adapt to the hypoxic state initiated by the activation of hypoxia inducible factor(HIF).The aim of this review is to introduce the pathology of cornea under hypoxia and the mechanism of hypoxia adaptation,to discuss the current animal models used in this field,and future research directions.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which...BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.展开更多
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic ...Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.展开更多
Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships ...Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships to the clinicopathologic characteristics of esophageal squamous cell carcinomas (ESCC). Methods: The expressions of HIF-1α, VEGF and MVD were detected by immunohistochemical method in 45 cases of ESCC, 30 intraepithelial neoplasia and 35 normal esophageal mucosal epithelia tissues. The correlations among the expressions of HIF-1α, VEGF and MVD, and their relationships to the clinicopathologic features of ESCC were analyzed. Results: The rate of positive expression of HIF-1α and VEGF which were 80% and 84% in ESCC were significantly higher than those in intraepithelial neoplasia and normal esophageal mucosal epithelium tissues (P 〈 0.01) and so did the MVD value which was71.10 ±15.02 in ESCC (P 〈 0.01). The expression of HIF-1α and VEGF were positively correlated with the depth of tumor invasion, lymph node metastasis and TNM staging of ESCC. The expressions of HIF-1α were positively correlated with the expressions of VEGF and the value of MVD. Conclusion: Overexpression of HIF-1α is found in ESCC. HIF-1α may induce the angiogenesis in ESCC by upregulating the transcription of VEGF gene. It may play an important role in the carcinogenesis and aggression in ESCC, HIF-1α, VEGF and MVD may be a useful marker for evaluating the biological behaviors of ESCC.展开更多
The relationship between apoptosis of granulosa cells and follicle development arrest in polycystic ovarian syndrome (PCOS) rats, and the contribution of tumor necrosis factor related apoptosis inducing ligand (TRAIL)...The relationship between apoptosis of granulosa cells and follicle development arrest in polycystic ovarian syndrome (PCOS) rats, and the contribution of tumor necrosis factor related apoptosis inducing ligand (TRAIL) in apoptosis of granulosa cells were explored. By using sodium prasterone sulfate rat PCOS model was induced. The apoptosis of granulosa cells in ovaries of rats was observed by TdT-mediated dUTP-biotin nick end-labeling (TUNEL), and the expression of TRAIL protein and mRNA in granulosa cells was detected by using immunhistochemical staining and reverse transcription polymerase chain reaction (RT-PCR) respectively. The apoptotic rate and the expression of protein TRAIL in granulosa cells were significantly higher in antral follicles from the PCOS rats than in those from the control rats (P<0.01, P<0.05). There was no significant difference in apoptotic rate and the expression of TRAIL protein in granulosa cells of preantral follicles between the PCOS rats and the control rats (P>0.05). No apoptosis and the expression of TRAIL protein in granulosa cells of primordial follicles were found in the two groups. The expression of TRAIL mRNA was significantly stronger in granulosa cells from the PCOS rats than in those from the con- trol rats (P<0.01). It was suggested that the apoptotic rate in granulosa cells was significantly higher in antral follicle from the PCOS rats than in those from the control rats. TRAIL played a role in regu- lating the apoptosis of granulosa cells in PCOS rats.展开更多
Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α...Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α present antileishmanial properties.Methods:The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis.Results:Resveratrol and CdCl_2 reduced the parasite load [IC50,(27.3±2.25) μM and(24.8±0.95) μM,respectively].The IC50 value of echinomycin was(22.7±7.36) nM and mimosine did not alter the parasite load in primary macrophages.The macrophage viability IC50 values for resveratrol,echinomycin and CdCl_2 and mimosine were >40 μM,>100 nM,> 200 μM and>2 000 μM,respectively.In vivo no differences between cutaneous lesions from control,resveratrol-and echinomycin-treated Balb/c mice were detected.Conclusions:Resveratrol,echinomycin and CdCl_2 reduce parasite survival in vitro.The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.展开更多
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515010969)Natural Science Foundation of Top Talent of SZTU(GDRC202305).
文摘Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJXZDXK-016A)Science Foundation of Tianjin Eye Hospital(No.YKZD1901).
文摘AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.
文摘The defining neuropathological feature of Parkinson's disease (PD) is the loss of nigrostriatal dopaminergic (DA) projections. This results in striatal dopamine levels and a biochemical reduction of movement disorders, such as a tremor at rest, rigidity of the limbs, bradykinesia, and postural instability (Kim et al., 2011; Kim et al., 2012; Burke and O'Malley, 2013; Leem et al., 2014; Namet al., 2014).
基金supported by the National Science Foundation CAREER Award CBET-0133775 and CBET-0754158,REU grant,and graduate fellowship from the CUNY
文摘Introduction Thrombosis is the formation of a blood clot in a blood vessel. When thrombosis happens in the brain,it would cause stroke; when happens in the heart,it would cause heart attack. If a thrombus breaks and travels to the lung,it would
文摘DI-3-n-butylphthalide is used to treat mild and moderate acute ischemic stroke.However,the precise underlying mechanism requires further investigation.In this study,we investigated the molecular mechanism of DI-3-n-butylphthalide action by various means.We used hydrogen peroxide to induce injury to PC12cells and RAW264.7 cells to mimic neuronal oxidative stress injury in stroke in vitro and examined the effects of DI-3-n-butylphthalide.We found that DI-3-nbutylphthalide pretreatment markedly inhibited the reduction in viability and reactive oxygen species production in PC12 cells caused by hydrogen peroxide and inhibited cell apoptosis.Furthermore,DI-3-n-butylphthalide pretreatment inhibited the expression of the pro-apoptotic genes Bax and Bnip3.DI-3-nbutylphthalide also promoted ubiquitination and degradation of hypoxia inducible factor 1α,the key transcription factor that regulates Bax and Bnip3 genes.These findings suggest that DI-3-n-butylphthalide exhibits a neuroprotective effect on stroke by promoting hypoxia inducible factor-1α ubiquitination and degradation and inhibiting cell apoptosis.
文摘Objective To investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1 α (HIF- 1α) and erythropoietin (EPO) in vivo and in vitro. Methods Rat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1 and EPO. Results The protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration ofDFO (post-DFO), lasted until 7 d and disappeared at 14 d (P 〈 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P 〈 0.05). Immunofluorescent staining found that HIF-1 α and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1 α and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO. Conclusion DFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF- 1 α and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF- 1 α and EPO.
基金the Swedish Research Council(2018-02667)the National Natural Science Foundation of China(31761133015,U1704281,81901335)+3 种基金the Swedish Childhood Cancer Foundation(PR2018-0082)Swedish Governmental Grants to Scientists Working in Health Care(ALFGBG-717791)the Swedish Brain Foundation(FO2018-0034)the Chinese Scholarship Council to TL(201707040025)and to YX(201507040082)。
文摘Perinatal complications,such as asphyxia,can cause brain injuries that are often associated with subsequent neurological deficits,such as cerebral palsy or mental retardation.The mechanisms of perinatal brain injury are not fully understood,but mitochondria play a prominent role not only due to their central function in metabolism but also because many proteins with apoptosis-related functions are located in the mitochondrion.Among these proteins,apoptosis-inducing factor has already been shown to be an important factor involved in neuronal cell death upon hypoxia-ischemia,but a better understanding of the mechanisms behind these processes is required for the development of more effective treatments during the early stages of perinatal brain injury.In this review,we focus on the molecular mechanisms of hypoxic-ischemic encephalopathy,specifically on the importance of apoptosis-inducing factor.The relevance of apoptosis-inducing factor is based not only because it participates in the caspase-independent apoptotic pathway but also because it plays a crucial role in mitochondrial energetic functionality,especially with regard to the maintenance of electron transport during oxidative phosphorylation and in oxidative stress,acting as a free radical scavenger.We also discuss all the different apoptosis-inducing factor isoforms discovered,focusing especially on apoptosis-inducing factor 2,which is only expressed in the brain and the functions of which are starting now to be clarified.Finally,we summarized the interaction of apoptosis-inducing factor with several proteins that are crucial for both apoptosis-inducing factor functions(prosurvival and pro-apoptotic)and that are highly important in order to develop promising therapeutic targets for improving outcomes after perinatal brain injury.
文摘Enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play a significant role in the regulation of glycolysis in cancer cells as well as its proliferation and survival. The expression of these mRNAs is increased in malignant tumors and strongly induced in different cancer cell lines by hypoxia inducible factor (HIF) through active HIF binding sites in promoter region of PFKFB-4 and PFKFB-3 genes. Moreover, the expression and hypoxia responsibility of PFKFB-4 and PFKFB-3 was also shown for pancreatic (Panc1, PSN-1, and MIA PaCa-2) as well as gastric (MKN45 and NUGC3) cancer cells. At the same time, their basal expression level and hypoxia responsiveness vary in the different cells studied: the highest level of PFKFB-4 protein expression was found in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with a stronger response to hypoxia in the pancreatic cancer cell line. Overexpression of different PFKFB in pancreatic and gastric cancer cells under hypoxic condition is correlated with enhanced expression of vascular endothelial growth factor (VEGF) and Glut1 mRNA as well as with increased level of HIF-1α protein. Increased expression of different PFKFB genes was also demonstrated in gastric, lung, breast, and colon cancers as compared to corresponding non-malignant tissue counterparts from the same patients, being more robust in the breast and lung tumors. Moreover, induction of PFKFB-4 mRNA expression in the breast and lung cancers is stronger than PFKFB-3 mRNA. The levels of both PFKFB-4 and PFKFB-3 proteins in non-malignant gastric and colon tissues were more pronounced than in the non-malignant breast and lung tissues. It is interesting to note that Panc1 and PSN-1 cells transfected with dominant/negative PFKFB-3 (dnPFKFB-3) showed a lower level of endogenous PFKFB-3, PFKFB-4, and VEGF mRNA expressions as well as a decreased proliferation rate of these cells. Moreover, a similar effect had dnPFKFB-4. In conclusion, there is strong evidence that PFKFB-4 and PFKFB-3 isoenzymes are induced under hypoxia in pancreatic and other cancer cell lines, are overexpressed in gastric, colon, lung, and breast malignant tumors and undergo changes in their metabolism that contribute to the proliferation and survival of cancer cells. Thus, targeting these PFKFB may therefore present new therapeutic opportunities.
文摘The role of the hypoxia-inducible factor(HIF)subunits 1α and 2α in response to hypoxia is well established in lungepithelial cells,whereas little is known about HIF-3α with respect to transcriptional and translational regulation by hy-poxia.HIF-3α and HIF-1α are two similar but distinct basic helix-loop-helix-PAS proteins,which have been postulatedto activate hypoxia responsive genes in response to hypoxia.Here,we used quantitative real time RT-PCR and immu-noblotting to determine the activation of HIF-3α vs.HIF-1α by hypoxia.HIF-3α was strongly induced by hypoxia(1%O_2)both at the level of protein and mRNA due to an increase in protein stability and transcriptional activation,whereasHIF-1α protein and mRNA levels enhanced transiently and then decreased because of a reduction in its mRNA stabilityin A549 cells,as measured on mRNA and protein levels.Interestingly,HIF-3α and HIF-1α exhibited strikingly similarresponses to a variety of activating or inhibitory pharmacological agents.These results demonstrate that HIF-3α is ex-pressed abundantly in lung epithelial cells,and that the transcriptional induction of HIF-3α plays an important role in theresponse to hypoxia in vitro.Our findings suggest that HIF-3α,as a member of the HIF system,is complementary ratherthan redundant to HIF-1α induction in protection against hypoxic damage in alveolar epithelial cells.
基金Supported by Medical University of Gdansk Grants ST-41,ST-40
文摘There is growing evidence that metabolic alterations play an important role in cancer development and progression.The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation.Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism.An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival,as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival.Based on the data that serum fatty acid synthase(FASN),also known as oncoantigen 519,is elevated in patients with certain types of cancer,its serum level was proposed as a marker of neoplasia.This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma(PDAC),the most common pancreatic neoplasm,characterized by high mortality.We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism.Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer.In particular,FASN is a viable candidate for indicator of pathologic state,marker of neoplasia,as well as,pharmacological treatment target in pancreatic cancer.Recent research showed that,in addition to lipogenesis,certain cancer cells can use fatty acids from circulation,derived from diet(chylomicrons),synthesized in liver,or released from adipose tissue for their growth.Thus,the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
基金supported by National Research Initiative Competitive grant 2007-35206-18037 from the USDA National Institute of Food and Agriculture(to FQZ)
文摘Hypoxia is a physiological or pathological condition of a deficiency of oxygen supply in the body as a whole or within a tissue. During hypoxia, tissues undergo a series of physiological responses to defend themselves against a low oxygen supply, including increased angiogenesis, erythropoiesis, and glucose uptake. The effects of hypoxia are mainly mediated by hypoxia-inducible factor 1 (HIF-1), which is a heterodimeric transcription factor consisting of o and 13 subunits. HIF-1β is constantly expressed, whereas HIF-1α is degraded under normal oxygen conditions. Hypoxia stabilizes HIF-1α and the HIF complex, and HIF then translocates into the nucleus to initiate the expression of target genes. Hypoxia has been extensively studied for its role in promoting tumor progression, and emerging evidence also indicates that hypoxia may play important roles in physiological processes, including mammary development and lactation. The mammary gland exhibits an increasing metabolic rate from pregnancy to lactation to support mammary growth, lactogenesis, and lactation. This process requires increasing amounts of oxygen consumption and results in localized chronic hypoxia as confirmed by the binding of the hypoxia marker pimonidazole HCI in mouse mammary gland. We hypothesized that this hypoxic condition promotes mammary development and lactation, a hypothesis that is supported by the following several lines of evidence: i) Mice with an HIF-1α deletion selective for the mammary gland have impaired mammary differentiation and lipid secretion, resulting in lactation failure and striking changes in milk compositions; ii) We recently observed that hypoxia significantly induces HIF-1α- dependent glucose uptake and GLUT1 expression in mammary epithelial cells, which may be responsible for the dramatic increases in glucose uptake and GLUT1 expression in the mammary gland during the transition period from late pregnancy to early lactation; and iii) Hypoxia and HIF-1α increase the phosphorylation of signal transducers and activators of transcription 5a (STAT5a)in mammary epithelial cells, whereas STATS phosphorylation plays important roles in the regulation of milk protein gene expression and mammary development. Based on these observations, hypoxia effects emerge as a new frontier for studying the regulation of mammary development and lactation.
文摘Although multiple advances have been made in systemic therapy for renal cell carcinoma(RCC),metastatic RCC remains incurable.In the current review,we focus on the underlying biology of RCC and plausible mechanisms of metastasis.We further outline evolving strategies to combat metastasis through adjuvant therapy.Finally,we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.
基金a grant from the tackle key problems in science andtechnology of Hebei Province(No.052761764).
文摘Objective: To evaluate the expression and correlation of hypoxia inducible factor la (HIF-la) and vascular endothelial growth factor (VEGF) and Survivin proteins in biopsy specimens of esophageal squamous cell carcinoma (ESCC), and then determine whether the levels of expression of these proteins could predict the clinical effectiveness of radiotherapy in individual cancers. Methods: The expressions of HIF-IQ, VEGF and Survivin were shown by S-P immunohistochemical staining method in biopsy specimens of ESCC, which were obtained endoscopically from 50 patients before radiotherapy, and 10 cases of normal esophageal tissue. Results: The positive expression rates of H IF-IQ, VEGF and Survivin were 68%, 74% and 72% in ESCC respectively. However, the three tumor markers had negative expressions in normal esophageal tissue. The positive rate of HIF-IQ was positively correlated with VEGF and Survivin proteins. The positive rates of HIF-IQ and Survivin were closely related to the clinical stage, radiotherapy effectiveness and survival, otherwise, the expression of HIF-IQ was closely related to distant metastasis; both of them were no correlation with the differentiation degree of tumor. The effective rates of radiotherapy and mean survival periods of those cases with positive and negative expressions of HIF-IQ were 8.8%, 10 months and 81.25%, 25 months, respectively. The one, two, and three years survival rates of patients with positive and negative expressions of HIF-IQ were 38.2%, 5.9%, 2.9%, and 81.3%, 54.2%, 15.8%, respectively (P = 0.001). Patients with HIF-IQ positive expression obviously survived less than those with negative expression and the difference was significant. The expression of VEGF was only related to the distant metastasis. Conclusion: Over expressions of HIF-IQ, VEGF and Survivin were found in ESCC. The positive rate of HIF-IQ was positively correlated with VEGF and Survivin proteins. The expression of HIF-IQ may serve as an important parameter in evaluating response for radiotherapy and prognosis of ESCC. It may play an important role by up-regulating the transcription of VEGF and Survivin genes.
基金the National Natural Sciences Foundation of China(39470739)the Ministry of Public Health Research Foundation(20122167)the Doctor Startup-Natural Science Foundation of Li-aoning Province (20041047)
文摘Objective To study the effect of γ-interferon (IFNγ), tumor necrosis factor related apoptosis inducing ligand (TRAIL), and cisplatin or etoposide induced apoptosis in human neuroblastoma cell line SH-SY5Y and its possible molecular mechanisms. Methods The expressions of Caspase 8 mRNA and protein were detected with RT-PCR and Western blot analysis. The effects of IFNγ, TRAIL, IFNγ + TRAIL, IFNγ + Caspase 8 inhibitor + TRAIL, IFNγ + cisplatin + TRAIL, and IFNγ + etoposide + TRAIL on the growth and apoptosis of SH-SY5Y cells were detected with the methods of MTT and flow cytometry. The relative Caspase 8 activity was measured with colorimetric assay. Results Caspase 8 was undetectable in SH-SY5Y cells but an increased expression of Caspase 8 mRNA and protein was found after treatment with IFNγ. SH-SY5Y ceils themselves were not sensitive to TRAIL, but those expressing Caspase 8 after treatment with IFNγ were. The killing effect of TRAIL on SH-SY5Y cells expressing Caspase 8 was depressed by Caspase 8 inhibitor. Cisplatin and etoposide could enhance the sensitivity of TRAIL on SH-SY5Y cells. The relative Caspase 8 activity of SH-SY5Y cells in IFNγ + TRAIL group was significantly higher than those of control group, IFNγ group, TRAIL group, and inhibitor group ( P 〈 0. 01 ). There was no significant difference among IFNγ + TRAIL group, IFNγ + cisplatin + TRAIL group, and IFNγ + etoposide + TRAIL group. Conclusions IFNγ could sensitize SH-SY5Y cells to TRAIL-induced apoptosis and this may be realized by the up-regulation of Caspase 8. Cisplatin and etoposide could enhance the killing effect of TRAIL on SH-SY5Y cells.
文摘The cornea is an avascular,transparent tissue that is essential for visual function.Any disturbance to the corneal transparency will result in a severe vision loss.Due to the avascular nature,the cornea acquires most of the oxygen supply directly or indirectly from the atmosphere.Corneal tissue hypoxia has been noticed to influence the structure and function of the cornea for decades.The etiology of hypoxia of the cornea is distinct from the rest of the body,mainly due to the separation of cornea from the atmosphere,such as prolonged contact lens wearing or closed eyes.Corneal hypoxia can also be found in corneal inflammation and injury when a higher oxygen requirement exceeds the oxygen supply.Systemic hypoxic state during lung diseases or high altitude also leads to corneal hypoxia when a second oxygen consumption route from aqueous humor gets blocked.Hypoxia affects the cornea in multiple aspects,including disturbance of the epithelium barrier function,corneal edema due to endothelial dysfunction and metabolism changes in the stroma,and thinning of corneal stroma.Cornea has also evolved mechanisms to adapt to the hypoxic state initiated by the activation of hypoxia inducible factor(HIF).The aim of this review is to introduce the pathology of cornea under hypoxia and the mechanism of hypoxia adaptation,to discuss the current animal models used in this field,and future research directions.
基金Supported by Research Project for Jiangxi Educational Department,No.180086.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a malignant tumor that occurs in the liver.Its onset is latent,and it shows high heterogeneity and can readily experience intrahepatic metastasis or systemic metastasis,which seriously affects patients’quality of life.Numerous studies have shown that hypoxia inducible factor1α(HIF-1α)plays a significant role in the occurrence and development of tumors,as it promotes the formation of intratumoral vessels and plays a key role in their metastasis and invasion.Some studies have reported that caspase-3,which is induced by various factors,is involved in the apoptosis of tumor cells.AIM To investigate the expression of caspase-3 and HIF-1αand their relationship to the prognosis of patients with primary HCC complicated by pathological changes of hemorrhage and necrosis.METHODS A total of 88 patients with HCC complicated by pathological changes of hemorrhage and necrosis who were treated at our hospital from January 2017 to December 2019 were selected.The expression of caspase-3 and HIF-1αin HCC and paracancerous tissues from these patients was assessed.RESULTS The positive expression rate of caspase-3 in HCC tissues was 27.27%,which was significantly lower than that in the paracancerous tissues(P<0.05),while the positive expression rate of HIF-1αwas 72.73%,which was significantly higher than that in the paracancerous tissues(P<0.05).The positive expression rates for caspase-3 in tumor node metastasis(TNM)stage III and lymph node metastasis tissues were 2.78%and 2.50%,respectively,which were significantly lower than those in TNM stage I-II and non-lymph node metastasis tissues(P<0.05).The positive expression rates of HIF-1αin TNM stage III,lymph node metastasis,and portal vein tumor thrombus tissues were 86.11%,87.50%,and 88.00%,respectively,and these values were significantly higher than those in TNM stage I-II,non-lymph node metastasis,and portal vein tumor thrombus tissues(P<0.05).The expression of caspase-3 and HIF-1αin HCC tissues were negatively correlated(rs=−0.426,P<0.05).The median overall survival time of HCC patients was 18.90 mo(95%CI:17.20–19.91).The results of the Cox proportional risk regression model analysis showed that TNM stage,portal vein tumor thrombus,lymph node metastasis,caspase-3 expression,and HIF-1αexpression were the factors influencing patient prognosis(P<0.05).CONCLUSION The expression of caspase-3 decreases and HIF-1αincreases in HCC tissues complicated by pathological changes of hemorrhage and necrosis,and these are related to clinicopathological features and prognosis.
基金supported by the National Natural Science Foundation of China, No. 81160157projects of Science and Technology Bureau of Guizhou Province, No.20093075, 20072127
文摘Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.
基金Supported by a grant from the Natural Sciences Foundation of Anhui Province (No.2006KJ134C)
文摘Objective: To investigate the correlations among the expressions of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial cell growth factor (VEGF) and microvessel density (MVD), and their relationships to the clinicopathologic characteristics of esophageal squamous cell carcinomas (ESCC). Methods: The expressions of HIF-1α, VEGF and MVD were detected by immunohistochemical method in 45 cases of ESCC, 30 intraepithelial neoplasia and 35 normal esophageal mucosal epithelia tissues. The correlations among the expressions of HIF-1α, VEGF and MVD, and their relationships to the clinicopathologic features of ESCC were analyzed. Results: The rate of positive expression of HIF-1α and VEGF which were 80% and 84% in ESCC were significantly higher than those in intraepithelial neoplasia and normal esophageal mucosal epithelium tissues (P 〈 0.01) and so did the MVD value which was71.10 ±15.02 in ESCC (P 〈 0.01). The expression of HIF-1α and VEGF were positively correlated with the depth of tumor invasion, lymph node metastasis and TNM staging of ESCC. The expressions of HIF-1α were positively correlated with the expressions of VEGF and the value of MVD. Conclusion: Overexpression of HIF-1α is found in ESCC. HIF-1α may induce the angiogenesis in ESCC by upregulating the transcription of VEGF gene. It may play an important role in the carcinogenesis and aggression in ESCC, HIF-1α, VEGF and MVD may be a useful marker for evaluating the biological behaviors of ESCC.
文摘The relationship between apoptosis of granulosa cells and follicle development arrest in polycystic ovarian syndrome (PCOS) rats, and the contribution of tumor necrosis factor related apoptosis inducing ligand (TRAIL) in apoptosis of granulosa cells were explored. By using sodium prasterone sulfate rat PCOS model was induced. The apoptosis of granulosa cells in ovaries of rats was observed by TdT-mediated dUTP-biotin nick end-labeling (TUNEL), and the expression of TRAIL protein and mRNA in granulosa cells was detected by using immunhistochemical staining and reverse transcription polymerase chain reaction (RT-PCR) respectively. The apoptotic rate and the expression of protein TRAIL in granulosa cells were significantly higher in antral follicles from the PCOS rats than in those from the control rats (P<0.01, P<0.05). There was no significant difference in apoptotic rate and the expression of TRAIL protein in granulosa cells of preantral follicles between the PCOS rats and the control rats (P>0.05). No apoptosis and the expression of TRAIL protein in granulosa cells of primordial follicles were found in the two groups. The expression of TRAIL mRNA was significantly stronger in granulosa cells from the PCOS rats than in those from the con- trol rats (P<0.01). It was suggested that the apoptotic rate in granulosa cells was significantly higher in antral follicle from the PCOS rats than in those from the control rats. TRAIL played a role in regu- lating the apoptosis of granulosa cells in PCOS rats.
基金supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo,Conselho Nacional de Desenvolvimento Científico e Tecnologico (NO.2009/10771-9)Coordenacao de Aperfeicoamento de Pessoal de Nível Superior (NO.301052/2009-3),Brazil
文摘Objective:To evaluate whether hypoxia inducible factor(HIF-1α) targeting pharmacological drugs,echinomycin,resveratrol and CdCl_2 which inhibit HIF-1α stimulation,and mimosine,which enhances the stability of HIF-1α present antileishmanial properties.Methods:The leishmanicidal effect of drugs was evaluated in mouse macrophages and Balb/c mouse model for cutaneous leishmaniosis.Results:Resveratrol and CdCl_2 reduced the parasite load [IC50,(27.3±2.25) μM and(24.8±0.95) μM,respectively].The IC50 value of echinomycin was(22.7±7.36) nM and mimosine did not alter the parasite load in primary macrophages.The macrophage viability IC50 values for resveratrol,echinomycin and CdCl_2 and mimosine were >40 μM,>100 nM,> 200 μM and>2 000 μM,respectively.In vivo no differences between cutaneous lesions from control,resveratrol-and echinomycin-treated Balb/c mice were detected.Conclusions:Resveratrol,echinomycin and CdCl_2 reduce parasite survival in vitro.The HIF-1α targeting pharmacological drugs require further study to more fully determine their anti-Leishmania potential and their role in therapeutic strategies.