Objective: To investigate gene expression of inducible nitric oxide synthase (iNOS) in injured spinal cord tissue of rats. Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: a normal ...Objective: To investigate gene expression of inducible nitric oxide synthase (iNOS) in injured spinal cord tissue of rats. Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: a normal group and five injury groups, six animals in each group. Animals in the injury groups were killed at 2, 6, 12, 24, 48 hours after injury, respectively. A compression injury model of spinal cord was established according to Nystrom B et al, and gene expression of iNOS in spinal cord tissue was examined by means of reverse transcription polymerase chain reaction (RT-PCR). Results: Gene expression of iNOS was not detectable in normal spinal cord tissue but was seen in the injury groups. The expression was gradually up-regulated, reaching the maximum at 24 hours. The expression at 48 hours began to decrease but was still significantly higher than that at 2 hours. Conclusions: iNOS is not involved in the normal physiological activities of spinal cord. Expression of iNOS is up-regulated in spinal cord tissue in response to injury and the up-regulation exists mainly in the late stage after injury. Over-expression of iNOS may contribute to the late injury of spinal cord.展开更多
Human endogenous retrovirus W env(HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis(MS). These diseases are accompanied by immunological reactions in th...Human endogenous retrovirus W env(HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis(MS). These diseases are accompanied by immunological reactions in the central nervous system(CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter – nitric oxide(NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase(hi NOS) and enhanced the promoter activity of hi NOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.展开更多
Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in...Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures.展开更多
基金theNationalNaturalScience FoundationofChina (No :3980 0 16 6 )
文摘Objective: To investigate gene expression of inducible nitric oxide synthase (iNOS) in injured spinal cord tissue of rats. Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: a normal group and five injury groups, six animals in each group. Animals in the injury groups were killed at 2, 6, 12, 24, 48 hours after injury, respectively. A compression injury model of spinal cord was established according to Nystrom B et al, and gene expression of iNOS in spinal cord tissue was examined by means of reverse transcription polymerase chain reaction (RT-PCR). Results: Gene expression of iNOS was not detectable in normal spinal cord tissue but was seen in the injury groups. The expression was gradually up-regulated, reaching the maximum at 24 hours. The expression at 48 hours began to decrease but was still significantly higher than that at 2 hours. Conclusions: iNOS is not involved in the normal physiological activities of spinal cord. Expression of iNOS is up-regulated in spinal cord tissue in response to injury and the up-regulation exists mainly in the late stage after injury. Over-expression of iNOS may contribute to the late injury of spinal cord.
基金supported by grants from the National Natural Sciences Foundation of China(No.31470264,No.81271820,No.30870789,and No.30300117)the Key Program of Natural Science Foundation of Hubei Province of China(No.2014CFA078)+1 种基金the Stanley Foundation from the Stanley Medical Research Institute(SMRI),USA(No.06R-1366),to Dr.Fan Zhuthe Scientific Innovation Team Project of Hubei Province of China(No.2015CFA009)
文摘Human endogenous retrovirus W env(HERV-W env) plays a critical role in many neuropsychological diseases such as schizophrenia and multiple sclerosis(MS). These diseases are accompanied by immunological reactions in the central nervous system(CNS). Microglia are important immunocytes in brain inflammation that can produce a gasotransmitter – nitric oxide(NO). NO not only plays a role in the function of neuronal cells but also participates in the pathogenesis of various neuropsychological diseases. In this study, we reported increased NO production in CHME-5 microglia cells after they were transfected with HERV-W env. Moreover, HERV-W env increased the expression and function of human inducible nitric oxide synthase(hi NOS) and enhanced the promoter activity of hi NOS. Microglial migration was also enhanced. These data revealed that HERV-W env might contribute to increase NO production and microglial migration ability in neuropsychological disorders by regulating the expression of inducible NOS. Results from this study might lead to the identification of novel targets for the treatment of neuropsychological diseases, including neuroinflammatory diseases, stroke, and neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China,No.81460208the Ningxia Natural Science Foundation of China,No.NZ13163
文摘Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures.