Micropores are decisive to mechanical properties and thermal deformation capabilities of powder met-allurgy(P/M)Ti alloys sintered compacts.As a result,achieving express densification is of prime im-portance and has a...Micropores are decisive to mechanical properties and thermal deformation capabilities of powder met-allurgy(P/M)Ti alloys sintered compacts.As a result,achieving express densification is of prime im-portance and has attracted increasing attention recently.Induction heating owns the merits of high effi-ciency,short process,and low cost,and thus has huge potential to be used as a sintering approach for the fabrication of P/M Ti alloys.Nevertheless,the facilitated densification behavior associated with induction heating sintering remains unclear so far.To address it,powder metallurgy Ti6Al4V is manufactured via induction heating sintering with which the underlying sintering mechanism is investigated in-depth.It is found that induction heating could generate a fully densified compact in a remarkably shortened time,demonstrating its superior sintering efficiency as compared with conventional resistance furnace heat-ing.COMSOL finite element analysis reveals that the maximum current density during induction heating can reach 10^(6)A m^(–2)though the magnetic field strength is solely 0.02 T,leading to a slight tempera-ture difference of approximately 30℃between the interior and exterior of the billet.Furthermore,the rapid heating essentially starts at sharp corners of particles due to the potent current concentration ef-fect,which facilitates the cracking of the particle surface oxide film and thus enhances the direct contact between them.Moreover,the electromigration effect caused by induction current promotes the diffusion capability of elements,giving rise to expedited densification,alloying,and chemical homogenization.This work provides not only critical insight into the sintering mechanism of induction heating sintering but also significant guidance for low-cost powder metallurgy materials preparation.展开更多
The effect of incorporating limited-diffusivity elements such as Fe and Ti on thermal stability of the nanocrystalline Al alloy was investigated.Al−10wt.%Fe and Al−10wt.%Fe−5wt.%Ti alloys were fabricated.The initial m...The effect of incorporating limited-diffusivity elements such as Fe and Ti on thermal stability of the nanocrystalline Al alloy was investigated.Al−10wt.%Fe and Al−10wt.%Fe−5wt.%Ti alloys were fabricated.The initial mixtures of powders were milled for 100 h in vacuum.The bulk samples were fabricated from the milled powders in a high frequency induction heat sintering(HFIHS)system.The milled powders and the bulk sintered samples were characterized by X-ray diffraction(XRD),Vickers microhardness,field emission scanning electron microscopy(FESEM-EDS)and transmission electron microscopy(TEM).The observations indicated that Fe and Ti were completely dispersed in the matrix to form a supersaturated solid solution(SSSS)with Al.Additionally,the inclusion of alloying elements led to an increase in hardness and yield strength of the alloy by 127%and 152%,respectively.The elevated temperature compression tests were carried out to evaluate the thermal stability of the alloys.The Al−10wt.%Fe−5wt.%Ti alloy revealed the optimum thermally stable behavior of the three alloys studied.The incorporation of Fe and Ti improved the thermal stability of the developed alloys through inhibiting the grain growth,hindering dissolution and growth of second phases(such as Al13Fe4 and Al13Ti),and forming a stable solid solution.展开更多
基金supported by the National Key Research and Development Program of China(No.2020YFB2008300)the National Natural Science Foundation of China(Nos.51971097 and 52301147)+2 种基金the Young Elite Scientist Sponsorship Program by China Association for Science and Technology(No.YESS20210054)the Hubei Province Natural Science Foundation(No.ZRMS2022000863)the Fundamental Research Funds for the Central Universities of Huazhong University of Science and Technology(No.2172021XXJS010)and the project supported by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Micropores are decisive to mechanical properties and thermal deformation capabilities of powder met-allurgy(P/M)Ti alloys sintered compacts.As a result,achieving express densification is of prime im-portance and has attracted increasing attention recently.Induction heating owns the merits of high effi-ciency,short process,and low cost,and thus has huge potential to be used as a sintering approach for the fabrication of P/M Ti alloys.Nevertheless,the facilitated densification behavior associated with induction heating sintering remains unclear so far.To address it,powder metallurgy Ti6Al4V is manufactured via induction heating sintering with which the underlying sintering mechanism is investigated in-depth.It is found that induction heating could generate a fully densified compact in a remarkably shortened time,demonstrating its superior sintering efficiency as compared with conventional resistance furnace heat-ing.COMSOL finite element analysis reveals that the maximum current density during induction heating can reach 10^(6)A m^(–2)though the magnetic field strength is solely 0.02 T,leading to a slight tempera-ture difference of approximately 30℃between the interior and exterior of the billet.Furthermore,the rapid heating essentially starts at sharp corners of particles due to the potent current concentration ef-fect,which facilitates the cracking of the particle surface oxide film and thus enhances the direct contact between them.Moreover,the electromigration effect caused by induction current promotes the diffusion capability of elements,giving rise to expedited densification,alloying,and chemical homogenization.This work provides not only critical insight into the sintering mechanism of induction heating sintering but also significant guidance for low-cost powder metallurgy materials preparation.
文摘The effect of incorporating limited-diffusivity elements such as Fe and Ti on thermal stability of the nanocrystalline Al alloy was investigated.Al−10wt.%Fe and Al−10wt.%Fe−5wt.%Ti alloys were fabricated.The initial mixtures of powders were milled for 100 h in vacuum.The bulk samples were fabricated from the milled powders in a high frequency induction heat sintering(HFIHS)system.The milled powders and the bulk sintered samples were characterized by X-ray diffraction(XRD),Vickers microhardness,field emission scanning electron microscopy(FESEM-EDS)and transmission electron microscopy(TEM).The observations indicated that Fe and Ti were completely dispersed in the matrix to form a supersaturated solid solution(SSSS)with Al.Additionally,the inclusion of alloying elements led to an increase in hardness and yield strength of the alloy by 127%and 152%,respectively.The elevated temperature compression tests were carried out to evaluate the thermal stability of the alloys.The Al−10wt.%Fe−5wt.%Ti alloy revealed the optimum thermally stable behavior of the three alloys studied.The incorporation of Fe and Ti improved the thermal stability of the developed alloys through inhibiting the grain growth,hindering dissolution and growth of second phases(such as Al13Fe4 and Al13Ti),and forming a stable solid solution.