This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations...This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Xray diffraction.The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions(Al–Mg oxides and Al–Mg–Ti oxides),whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides.We observed a new MgAl2O4 phase at the inner wall of the MgO crucible,with the alloy melted in the MgO crucible exhibiting fewer inclusions.No new phase occurred at the inner wall of the Al2O3 crucible.We discuss the mechanism of interaction between the refractories and the Ni-based superalloy.Physical erosion was found to predominate in the Al2O3 crucible,whereas dissolution and chemical reactions dominated in the MgO crucible.No reaction was observed between three crucibles and the Ti of the melt although the Ti content(3.8wt%)was higher than that of Al(2.1wt%).展开更多
The Y2O3 crucibles were introduced in the study as an alternative to the traditional ceramic ones in vacuum induction melting of multi-component Nb-16Si-22Ti-2AI-2Hf-17Cr (at.%) alloys, to reveal the possible intera...The Y2O3 crucibles were introduced in the study as an alternative to the traditional ceramic ones in vacuum induction melting of multi-component Nb-16Si-22Ti-2AI-2Hf-17Cr (at.%) alloys, to reveal the possible interactions between the alloy melt and the refractory crucible. Multiple melting time lengths and two cooling schemes were designed and used for the experiments. The chemical composition and microstructure of the tested alloy and the melt-crucible interaction were investigated and evaluated. In the experiments,Y2O3 crucible displays good physical-chemical compatibility. The results indicate that the increment of O element in the as-cast ingot iS: 0.03at.%-0.04at.% (72-97 ppm) and the increment of Y element is very insignificant. The key features of the alloy melt interacting with Y2O3 ceramics are analyzed and concluded in the paper. As a result of the dissolution reactiofi xY2O3 (in molten alloy) + (1-x)HfO2 (impurity) →,Hf1-xY2xO2-x, a continuous double-layer solid film consisted of HfO2 solid solution (-2 pm) and pure HfO2 (-5μm) is formed on the surface of the test ingot after cooled down in the crucible. The experimental results show that theY2O3 crucible is applicable to the vacuum induction melting of Nb' Si based alloys.展开更多
The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also ...The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also clarified. Results showed that the addition of Y remarkably promoted the purification effect on the K4169 melt. The contents of O and S in the K4169 as-cast alloy ingots after purification were 3–4 and 8–10 ppm, respectively. The degrees of deoxidation and desulfurization increased to 50% and 57%, respectively, upon the addition of 0.1 wt% Y. The yttrium-rich phase that precipitated at the grain boundary blocked the diffusion of C and the accumulation of S, thereby contributing to the purification of the alloy.展开更多
The variation law of inclusions type and size in the vacuum induction melting process and ingot of Ni-based superalloy containing 70%return material was studied by industrial test sampling,and the mechanism of inclusi...The variation law of inclusions type and size in the vacuum induction melting process and ingot of Ni-based superalloy containing 70%return material was studied by industrial test sampling,and the mechanism of inclusions formation was analyzed with thermodynamic calculations.The results show that there are mainly two types of composite inclusions in the vacuum induction melting of Ni-based superalloys,which are nitride-and oxide-based composite inclusions,like Al_(2)O_(3)-SiO_(2)-Cr_(2)O_(3),TiN-(Mo,Nb)C,etc.The type and proportion of inclusions from the center to the edge of the vacuum induction ingot did not change significantly.The number density of inclusions from the center to the edge of the ingot varied less,and the size of inclusions became smaller from the center to the edge.In addition,thermodynamic calculations show that oxides(M_(2)O_(3))are present in the liquid phase and mainly contain Al,Ti,Cr,Fe and O elements.The nitride consists mainly of Ti and N and contains small amounts of Cr,C,Nb,and Mo elements.This is consistent with the results of industrial tests.As the temperature decreases,the precipitation phases such as M_(2)O_(3),MN,γ,MC,δ,γ'andμphases are gradually precipitated,where oxides and nitrides are present in the liquid phase.The contents of O and N elements are the main influencing factors for the inclusions content and precipitation temperature;when the nitrogen content is reduced to below 0.0015%,it can make MN precipitate below the liquid-phase line.展开更多
Experimental studies on the melting process of titanium aluminum alloy have been pursued from the viewpoint of contamination.TiAl alloys were prepared with vacuum induction melting (VIM) in calcia crucibles at 1873 ...Experimental studies on the melting process of titanium aluminum alloy have been pursued from the viewpoint of contamination.TiAl alloys were prepared with vacuum induction melting (VIM) in calcia crucibles at 1873 K and 1923 K in order to determine the behavior of the oxygen content as a function of temperature,time and frequency of power.The experiment results showed that alloys were uncontaminated except for the increasing of oxygen content which was introduced from the reaction CaO(s)=Ca(in TiAl)+O(in TiAl),and the standard Gibbs energy of the reaction was determined to be △G0 =274000 102.8T(J/mol).Oxygen content increased slowly with the melting time by about 50×10-6 wt pct/min,and decreased with induction melting frequency.Lower superheat and higher melting frequency can be used to reduce oxygen content increasing rate.展开更多
The developing of large size superalloy vacuum induction melting(VIM)ingots is limited owing to hot cracking,The hot cracking behavior of the large size GH4742 superalloy VIM ingot was investigated via experiment and ...The developing of large size superalloy vacuum induction melting(VIM)ingots is limited owing to hot cracking,The hot cracking behavior of the large size GH4742 superalloy VIM ingot was investigated via experiment and simulation.The microstructure was examined by optical microscopy,and element segregation was investigated by electron probe microanalysis.The solidification temperature range and yield strength at high temperature(YSHT)were calculated by JMatPro software.The results show that the variations of microstructure and element segregation in different locations are caused by different cooling rates.Moreover,the larger secondary dendrite arm spacing and serious element segregation of Nb accelerate hot cracking of the VIM ingot.In addition,the solidification temperature range is wider,and YSHT is lower in center than at edge of the ingot.Therefore,the hot cracking susceptibility is the highest in the center of the GH4742 superalloy VIM ingot.The critical criterion of element segregation for hot cracking is that the partition coeffcient of Nb should be larger than 0.5.展开更多
The electromagnetic characteristics of cold wall crucible, especially its field strength and distribution, were evaluated experimentally, in which the effects of parameters as input power and position were also discus...The electromagnetic characteristics of cold wall crucible, especially its field strength and distribution, were evaluated experimentally, in which the effects of parameters as input power and position were also discussed. The results showed that the magnetic induction intensity (B) increased with the increase of the input power. Along the radial direction inside the cold crucible, B is the strongest at the edges, and gradually attenu- ated from the edges to the center. While along the axial direction, B is the strongest at the center, and gradually attenuated from the center to the edges. Corresponding with the calculation on electromagnetic field distribution inside the coil without cold crucible, the effects of cold crucible on the electromagnetic field have been reduced by comparing measured and calculated results. However, it was also found that the value of B strength will be decreased to about 50% of its original proposition without cold crucible due to the electromagnetic shielding effect, which will be the understanding for mehing turns in cold crucible.展开更多
In this study,yttrium as desulfurizer on the purification of Ni-20Co-20Cr-10Al-Y alloy during vac-uum induction melting(VIM)process using Y_(2)O_(3)cru-cibles was investigated experimentally.It is found that Y plays a...In this study,yttrium as desulfurizer on the purification of Ni-20Co-20Cr-10Al-Y alloy during vac-uum induction melting(VIM)process using Y_(2)O_(3)cru-cibles was investigated experimentally.It is found that Y plays an important role on the desulfurizing of the NiCo-CrAIY alloy.Without any addition of Y,merely the employment of Y_(2)O_(3)crucibles could effectively reduce S content of the alloy melts from 28×10^(-6)to 6×10^(-6)-7×10^(-6).With addition of 0.8 wt%Y in the alloy,the concentration of S could further reduce 2×10^(7)3×10^(-6).The primary interactive mechanism between Y and molten alloy was concluded to be the synthesis reac-tion of NisY phase,Y2S3 phases and YAIO_(3)phase.In the desulfurize slags,Y2S3 phases and Y_(2)O_(3)phase are found.No secondary contamination is present in the alloy melts after addition of Y.展开更多
Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal su...Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100℃ above the melting point inside the crucible.Chemical analysis showed that there existed an optimum holding time of 3 min during which the alloying elements were only dropped to a predictable limit. Microstructure, chemical composition, shape memory and mechanical properties of the cast metal ingots were determined to indicate the appropriate achievements with the specified 3 min optimum holding time.展开更多
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas...A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.展开更多
CuCr25 alloys containing different Ni content were prepared by vacuum induction melting (VIM). The micro structure and properties were tested. The results show that with the increase of Ni content in CuCr25 alloys, th...CuCr25 alloys containing different Ni content were prepared by vacuum induction melting (VIM). The micro structure and properties were tested. The results show that with the increase of Ni content in CuCr25 alloys, the Cr phase changed from developed dendrite into nodular grains and was drastically refined; the electrical conductivity significantly decrease, but still reach the level of conventional CuCr50 when the Ni content is below 0.5%. The Ni content had little influence on their breakdown strength. The first breakdown sites transferred to the boundary of Cu and Cr phase for CuCr25Ni compared to the Cr phase for CuCr25 without Ni.展开更多
Magnesium-neodymium based alloys were prepared by induction melting in an alumina crucible under protection of pure argon atmosphere. XRD patterns show that the as-melted Mg-Nd and Mg3NdNi0.1 diffraction peaks can be ...Magnesium-neodymium based alloys were prepared by induction melting in an alumina crucible under protection of pure argon atmosphere. XRD patterns show that the as-melted Mg-Nd and Mg3NdNi0.1 diffraction peaks can be excellently indexed with D03 structure (BiF3 type, space group Fm3m). The lattice constant of Mg3Nd phase is 0.7390 nm, which is determined by XRD analysis using Cohen′s extrapolation method. The reversible hydrogen storage capacity reaches 1.95wt.% for Mg3Nd and 2.68wt.% for Mg3NdNi0.1. The desorption of hydrogen takes place at 291 ℃ for Mg3Nd and at 250 ℃ for Mg3NdNi0.1. The alloys could absorb hydrogen at room temperature with rapid hydriding and dehydriding kinetics after only one cycle. The enthalpy (ΔH) and entropy (ΔS) of Mg3Nd-H dehydriding reaction were -68.2 kJ·mol-1 H2 and -0.121 kJ·(K·mol)-1 H2 determined by using van′t Hoff plot according to the pressure-composition-isotherms (P-C-I) curve measured at different temperatures. Hydrogen absorption kinetic property of Mg3NdNi0.1 alloy was also measured at room temperature.展开更多
CuCr25W1Ni2 alloy was prepared by means of vacuum induction melting (VIM). A series of Cu/Cr alloys with different compositions (mass fraction, 25%~75%) and Cr grain sizes (up to 150 μm) were investigated for their ...CuCr25W1Ni2 alloy was prepared by means of vacuum induction melting (VIM). A series of Cu/Cr alloys with different compositions (mass fraction, 25%~75%) and Cr grain sizes (up to 150 μm) were investigated for their differences in physical properties and breakdown voltage. The influence of alloy elements and microstructure on the performance of CuCr25W1Ni2 alloy was also discussed. Experimental results show that the chromium phase is strengthened and its size is minimized by the addition of tungsten powder. After electrical breakdown, very fine tungsten particles in the melt layer form the external nuclei in the solidification process. The microstructure of surface melt layer of CuCr25W1Ni2 alloy is much flatter. It can notably improve the dielectric strength. On the other hand, the nickel can enhance the mutual solubility of copper and chromium, and the whole alloy is strengthened. [展开更多
Quaternary alloys Mg2Sn0.4Si0.6-xGex (x=0, 0.02, 0.05, 0.08 0.1, and 0.2) were prepared using induction melting followed by hot-pressing. Relative densities of the sintered samples were over 97% of the theoretical v...Quaternary alloys Mg2Sn0.4Si0.6-xGex (x=0, 0.02, 0.05, 0.08 0.1, and 0.2) were prepared using induction melting followed by hot-pressing. Relative densities of the sintered samples were over 97% of the theoretical values. Multiple phases were detected in the samples. It was found that the Seebeck coefficient was sensitive to the content of Mg2Ge and a maximum value of about 350 μV-K^-1 was obtained. The introduction of Ge increases the electrical conductivity and the thermal conductivity simultaneously. The mechanism of this phenomenon was discussed. A maximum dimensionless figure of merit, ZT, of about 0.28 was obtained for Mg2Sn0.4Si0.55Ge0.05 at 550 K.展开更多
Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet. A range of palladium alloys jewellery fabrication has been orga...Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet. A range of palladium alloys jewellery fabrication has been organized. Compositions of a number of jewellery palladium alloys grade 850, 900, 950 and 990 have been proposed, their production and application in jewellery manufacture has been organized. To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used. The ingots heat treatment conditions, as well as semi-finished jewelry plastic deformation parameters have been determined.展开更多
As the aircraft and aerospace industry and the automobile industry are developed, the demand of reliable materials with high strength and high toughness is steadily increased. The grain miniature method which improves...As the aircraft and aerospace industry and the automobile industry are developed, the demand of reliable materials with high strength and high toughness is steadily increased. The grain miniature method which improves the ductility and the toughness simultaneously under high strength is the miniature of the casting microstructure. In this paper, the Nb which affects the austenite grain miniature is added by 0.00%, 0.03% and 0.06% in this steel and the ingot is manufactured in a vacuum induction melting furnace (VIM). The casting microstructure and the mechanical property of the maraging steel according to Nb contents are analyzed by conducting the solution annealing and the age hardening after hot rolling. In this result, a specimen containing 0.03% Nb is most miniature. When it does the long time age hardening, the precipitation estimated as the carbide is appeared. The mechanical properties are excellent if a specimen containing 0.06% Nb does the age hardening during 8 h in 482℃.展开更多
Considering the high melting point and high stability of SrO,it has potential applications in the field of the preparation of titanium alloys.To improve the hydration resistance,SrO samples with different ZrO_(2)addit...Considering the high melting point and high stability of SrO,it has potential applications in the field of the preparation of titanium alloys.To improve the hydration resistance,SrO samples with different ZrO_(2)additions were fabricated after firing at 1750℃for 6 h.The phase,the microstructure,and the hydration resistance of the samples were researched.The results show that the sample with 33 mol%ZrO_(2)addition possesses good hydration resistance with the mass gain after hydration for 13 days of less than 0.42 mass%.The SrO crucible with 33 mol%ZrO_(2)addition does not react with TiNi alloy melt during melting,which provides a support for searching new refractories with good hydration resistance for induction melting titanium alloys.展开更多
Processing technologies for the mass production of aero and industrial gas turbine engine hot-section components made by the investment casting process are discussed. Howmet Corporation is involved in most of these te...Processing technologies for the mass production of aero and industrial gas turbine engine hot-section components made by the investment casting process are discussed. Howmet Corporation is involved in most of these technologies because of the end-user's desire for a finished part. These technologies include pattern-making (using a variety of wax and plastic materials, rapid prototyping, 'hard' tooling, and wax injection machines), silica-zircon and alumina cores that produce internal passages, shells for very large parts and for use with alloys containing reactive elements, Ni, Co, and Ti alloys that are cleaner than ever before,zirconia, silica, and mullite crucibles;computer-controls,robotics,and the manufacture of vacuum casting furnaces; cleaning and finishing equipment designed to quickly process parts with minimal variation,and post-casting operations including hot isostatic pressing (HIP),heat treating,coating,and machining. These technologies will be discussed along with process capabilities required by today's turbine hot-section component suppliers.展开更多
The inductive skull melting technology has many advantages for melting of innovative materials in the field of glasses and oxides.It offers high processing temperatures and the compliance of necessary purities at the ...The inductive skull melting technology has many advantages for melting of innovative materials in the field of glasses and oxides.It offers high processing temperatures and the compliance of necessary purities at the same time. Applicable materials are in particular optical glasses,which are applied for lenses,fibers or filters,because the skull melting technology allows high process temperatures and high purities of the final product.In the production of glass materials strong requirements have to be fulfilled regarding the optical characteristics,which are mainly defined and influenced by the melting of the raw material and the following refining process.An unsolved problem in the melting process of glasses and oxides using the inductive skull melting technology was in the past the unknown heat and mass transfer in the melt because temperature and melt flow measurements in the melt are practically impossible due to the high temperatures.On the other hand the temperature and velocity distribution in the melt is very important regarding the safety of the melting process,the process control for producing the required properties of the material or the further development of skull melting installations.The paper describes a new numerical model which is able to simulate the instationary 3D melt flow of glasses and oxides.The numerical model takes into account electromagnetic,convection and Marangoni forces.By this a comprehensive view of the hidden processes in the practical experiments could be obtained. By means of the new numerical model different glass and oxide melting processes were simulated and the results were compared with experimental results.The comparisons show first of all a very good agreement between experimental and numerical results at the melt surfaces.Additionally the numerical results allow to look much deeper inside the melt and show interesting new effects of the heat and mass transfer below the melt surface which were unknown before.展开更多
A wide range of industrial metallurgical heating and melting processes are carried out using electrothermal and electromagnetic technologies.The application of electromagnetic processing offers many advantages from te...A wide range of industrial metallurgical heating and melting processes are carried out using electrothermal and electromagnetic technologies.The application of electromagnetic processing offers many advantages from technological, ecological and economical point of view.Although the technology level of the electromagnetic heating and melting installations and processes used in the industry today is very high,there are still potentials for improvement and optimization.In this paper recent applications and future development trends for efficient use of electromagnetic processing technologies in metallurgical and non-metallic material processes are described along selected examples in the field of heating for melting,forging,joining and solidification.展开更多
基金This work is financially supported by the Natural Science Foundation of China(No.51974029)the Natural Science and Technology Major Project(No.2017-VI-0014-0086)and Fundamental Research Funds for the Central Universities(Nos.FRF-AT-19-013 and FRF-NP-19-003).
文摘This study documents laboratory-scale observation of the interactions between the Ni-based superalloy FGH4096 and refractories.Three different crucibles were tested—MgO,Al2O3,and MgO–spinel.We studied the variations in the compositions of the inclusions and the alloy–crucible interface with the reaction time using scanning electron microscopy equipped with energy dispersive X-ray spectroscopy and Xray diffraction.The results showed that the MgO and MgO–spinel crucibles form MgO-containing inclusions(Al–Mg oxides and Al–Mg–Ti oxides),whereas the inclusions formed when using the Al2O3 crucible are Al2O3 and Al–Ti oxides.We observed a new MgAl2O4 phase at the inner wall of the MgO crucible,with the alloy melted in the MgO crucible exhibiting fewer inclusions.No new phase occurred at the inner wall of the Al2O3 crucible.We discuss the mechanism of interaction between the refractories and the Ni-based superalloy.Physical erosion was found to predominate in the Al2O3 crucible,whereas dissolution and chemical reactions dominated in the MgO crucible.No reaction was observed between three crucibles and the Ti of the melt although the Ti content(3.8wt%)was higher than that of Al(2.1wt%).
文摘The Y2O3 crucibles were introduced in the study as an alternative to the traditional ceramic ones in vacuum induction melting of multi-component Nb-16Si-22Ti-2AI-2Hf-17Cr (at.%) alloys, to reveal the possible interactions between the alloy melt and the refractory crucible. Multiple melting time lengths and two cooling schemes were designed and used for the experiments. The chemical composition and microstructure of the tested alloy and the melt-crucible interaction were investigated and evaluated. In the experiments,Y2O3 crucible displays good physical-chemical compatibility. The results indicate that the increment of O element in the as-cast ingot iS: 0.03at.%-0.04at.% (72-97 ppm) and the increment of Y element is very insignificant. The key features of the alloy melt interacting with Y2O3 ceramics are analyzed and concluded in the paper. As a result of the dissolution reactiofi xY2O3 (in molten alloy) + (1-x)HfO2 (impurity) →,Hf1-xY2xO2-x, a continuous double-layer solid film consisted of HfO2 solid solution (-2 pm) and pure HfO2 (-5μm) is formed on the surface of the test ingot after cooled down in the crucible. The experimental results show that theY2O3 crucible is applicable to the vacuum induction melting of Nb' Si based alloys.
基金financially supported by the National Science & Technology Pillar Program of China (No. 2013BAB11B04)the National Natural Science Foundation of China (Nos. 51404017 and 51604014)
文摘The effects of rare earth element Y on the purification of K4169 superalloy during vacuum induction melting were investigated at different superheating temperatures. The corresponding interaction mechanisms were also clarified. Results showed that the addition of Y remarkably promoted the purification effect on the K4169 melt. The contents of O and S in the K4169 as-cast alloy ingots after purification were 3–4 and 8–10 ppm, respectively. The degrees of deoxidation and desulfurization increased to 50% and 57%, respectively, upon the addition of 0.1 wt% Y. The yttrium-rich phase that precipitated at the grain boundary blocked the diffusion of C and the accumulation of S, thereby contributing to the purification of the alloy.
基金supported by the National Key R&D Program of China(2021YFB3700402)National Natural Science Foundation of China(51974020,52104318 and 52074030).
文摘The variation law of inclusions type and size in the vacuum induction melting process and ingot of Ni-based superalloy containing 70%return material was studied by industrial test sampling,and the mechanism of inclusions formation was analyzed with thermodynamic calculations.The results show that there are mainly two types of composite inclusions in the vacuum induction melting of Ni-based superalloys,which are nitride-and oxide-based composite inclusions,like Al_(2)O_(3)-SiO_(2)-Cr_(2)O_(3),TiN-(Mo,Nb)C,etc.The type and proportion of inclusions from the center to the edge of the vacuum induction ingot did not change significantly.The number density of inclusions from the center to the edge of the ingot varied less,and the size of inclusions became smaller from the center to the edge.In addition,thermodynamic calculations show that oxides(M_(2)O_(3))are present in the liquid phase and mainly contain Al,Ti,Cr,Fe and O elements.The nitride consists mainly of Ti and N and contains small amounts of Cr,C,Nb,and Mo elements.This is consistent with the results of industrial tests.As the temperature decreases,the precipitation phases such as M_(2)O_(3),MN,γ,MC,δ,γ'andμphases are gradually precipitated,where oxides and nitrides are present in the liquid phase.The contents of O and N elements are the main influencing factors for the inclusions content and precipitation temperature;when the nitrogen content is reduced to below 0.0015%,it can make MN precipitate below the liquid-phase line.
文摘Experimental studies on the melting process of titanium aluminum alloy have been pursued from the viewpoint of contamination.TiAl alloys were prepared with vacuum induction melting (VIM) in calcia crucibles at 1873 K and 1923 K in order to determine the behavior of the oxygen content as a function of temperature,time and frequency of power.The experiment results showed that alloys were uncontaminated except for the increasing of oxygen content which was introduced from the reaction CaO(s)=Ca(in TiAl)+O(in TiAl),and the standard Gibbs energy of the reaction was determined to be △G0 =274000 102.8T(J/mol).Oxygen content increased slowly with the melting time by about 50×10-6 wt pct/min,and decreased with induction melting frequency.Lower superheat and higher melting frequency can be used to reduce oxygen content increasing rate.
基金supported by the National Natural Science Foundation of China(Nos.Ui708253 and 51571052)。
文摘The developing of large size superalloy vacuum induction melting(VIM)ingots is limited owing to hot cracking,The hot cracking behavior of the large size GH4742 superalloy VIM ingot was investigated via experiment and simulation.The microstructure was examined by optical microscopy,and element segregation was investigated by electron probe microanalysis.The solidification temperature range and yield strength at high temperature(YSHT)were calculated by JMatPro software.The results show that the variations of microstructure and element segregation in different locations are caused by different cooling rates.Moreover,the larger secondary dendrite arm spacing and serious element segregation of Nb accelerate hot cracking of the VIM ingot.In addition,the solidification temperature range is wider,and YSHT is lower in center than at edge of the ingot.Therefore,the hot cracking susceptibility is the highest in the center of the GH4742 superalloy VIM ingot.The critical criterion of element segregation for hot cracking is that the partition coeffcient of Nb should be larger than 0.5.
文摘The electromagnetic characteristics of cold wall crucible, especially its field strength and distribution, were evaluated experimentally, in which the effects of parameters as input power and position were also discussed. The results showed that the magnetic induction intensity (B) increased with the increase of the input power. Along the radial direction inside the cold crucible, B is the strongest at the edges, and gradually attenu- ated from the edges to the center. While along the axial direction, B is the strongest at the center, and gradually attenuated from the center to the edges. Corresponding with the calculation on electromagnetic field distribution inside the coil without cold crucible, the effects of cold crucible on the electromagnetic field have been reduced by comparing measured and calculated results. However, it was also found that the value of B strength will be decreased to about 50% of its original proposition without cold crucible due to the electromagnetic shielding effect, which will be the understanding for mehing turns in cold crucible.
基金This study was financially supported by the National Science&Technology Pillar Program of China(No.2013BAB11B04)the National Natural Science Foundation of China(No.51404017)Furthermore,the authors wish to express their appreciation to the State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology.
文摘In this study,yttrium as desulfurizer on the purification of Ni-20Co-20Cr-10Al-Y alloy during vac-uum induction melting(VIM)process using Y_(2)O_(3)cru-cibles was investigated experimentally.It is found that Y plays an important role on the desulfurizing of the NiCo-CrAIY alloy.Without any addition of Y,merely the employment of Y_(2)O_(3)crucibles could effectively reduce S content of the alloy melts from 28×10^(-6)to 6×10^(-6)-7×10^(-6).With addition of 0.8 wt%Y in the alloy,the concentration of S could further reduce 2×10^(7)3×10^(-6).The primary interactive mechanism between Y and molten alloy was concluded to be the synthesis reac-tion of NisY phase,Y2S3 phases and YAIO_(3)phase.In the desulfurize slags,Y2S3 phases and Y_(2)O_(3)phase are found.No secondary contamination is present in the alloy melts after addition of Y.
文摘Losses of the alloying elements during vacuum induction melting of the binary NiTi alloys were evaluated by visual observation and chemical analysis of the NiTi melted specimens and the scalp formed on the internal surface of the crucible. The results indicated that the major sources of the losses were (a) evaporation of the metals, (b) formation of the NiTi scalp and (c) the sprinkling drops splashed out of the melt due to the exothermic reactions occurring between Ni and Ti to form the NiTi parent phase. Quantitative evaluations were made for the metallic losses by holding the molten alloy for 0.5, 3, 5, 10 and 15 min at around 100℃ above the melting point inside the crucible.Chemical analysis showed that there existed an optimum holding time of 3 min during which the alloying elements were only dropped to a predictable limit. Microstructure, chemical composition, shape memory and mechanical properties of the cast metal ingots were determined to indicate the appropriate achievements with the specified 3 min optimum holding time.
基金Item Sponsored by National Natural Science Foundation of China(50534010)
文摘A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in Fe-Cr-Mn-Mo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 0.69% in 18Crl8Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickel-free, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 0.81%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 um. After homogenization of the hot rolled plate at 1 150℃ × 1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
基金We gratefully acknowledge the financial support from "863" program (Grant No.200lAA320714 and 715-005-0160)the National Natural Science Foundation of China (Grant No.50071043 and 50271050). The authors also appreciate Prof. Y.X. Zhu, Z. Zheng and A.P.
文摘CuCr25 alloys containing different Ni content were prepared by vacuum induction melting (VIM). The micro structure and properties were tested. The results show that with the increase of Ni content in CuCr25 alloys, the Cr phase changed from developed dendrite into nodular grains and was drastically refined; the electrical conductivity significantly decrease, but still reach the level of conventional CuCr50 when the Ni content is below 0.5%. The Ni content had little influence on their breakdown strength. The first breakdown sites transferred to the boundary of Cu and Cr phase for CuCr25Ni compared to the Cr phase for CuCr25 without Ni.
基金This work was financially supported by the National Natural Science Foundation (No.50401015, 50371027) Guangdong Provincial Natural Science Foundation (Team project).
文摘Magnesium-neodymium based alloys were prepared by induction melting in an alumina crucible under protection of pure argon atmosphere. XRD patterns show that the as-melted Mg-Nd and Mg3NdNi0.1 diffraction peaks can be excellently indexed with D03 structure (BiF3 type, space group Fm3m). The lattice constant of Mg3Nd phase is 0.7390 nm, which is determined by XRD analysis using Cohen′s extrapolation method. The reversible hydrogen storage capacity reaches 1.95wt.% for Mg3Nd and 2.68wt.% for Mg3NdNi0.1. The desorption of hydrogen takes place at 291 ℃ for Mg3Nd and at 250 ℃ for Mg3NdNi0.1. The alloys could absorb hydrogen at room temperature with rapid hydriding and dehydriding kinetics after only one cycle. The enthalpy (ΔH) and entropy (ΔS) of Mg3Nd-H dehydriding reaction were -68.2 kJ·mol-1 H2 and -0.121 kJ·(K·mol)-1 H2 determined by using van′t Hoff plot according to the pressure-composition-isotherms (P-C-I) curve measured at different temperatures. Hydrogen absorption kinetic property of Mg3NdNi0.1 alloy was also measured at room temperature.
文摘CuCr25W1Ni2 alloy was prepared by means of vacuum induction melting (VIM). A series of Cu/Cr alloys with different compositions (mass fraction, 25%~75%) and Cr grain sizes (up to 150 μm) were investigated for their differences in physical properties and breakdown voltage. The influence of alloy elements and microstructure on the performance of CuCr25W1Ni2 alloy was also discussed. Experimental results show that the chromium phase is strengthened and its size is minimized by the addition of tungsten powder. After electrical breakdown, very fine tungsten particles in the melt layer form the external nuclei in the solidification process. The microstructure of surface melt layer of CuCr25W1Ni2 alloy is much flatter. It can notably improve the dielectric strength. On the other hand, the nickel can enhance the mutual solubility of copper and chromium, and the whole alloy is strengthened. [
基金supported by the National Natural Science Foundation of China (No.50522203, 50731006)the National Basic Research Program of China (No.2007CB607502)
文摘Quaternary alloys Mg2Sn0.4Si0.6-xGex (x=0, 0.02, 0.05, 0.08 0.1, and 0.2) were prepared using induction melting followed by hot-pressing. Relative densities of the sintered samples were over 97% of the theoretical values. Multiple phases were detected in the samples. It was found that the Seebeck coefficient was sensitive to the content of Mg2Ge and a maximum value of about 350 μV-K^-1 was obtained. The introduction of Ge increases the electrical conductivity and the thermal conductivity simultaneously. The mechanism of this phenomenon was discussed. A maximum dimensionless figure of merit, ZT, of about 0.28 was obtained for Mg2Sn0.4Si0.55Ge0.05 at 550 K.
文摘Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet. A range of palladium alloys jewellery fabrication has been organized. Compositions of a number of jewellery palladium alloys grade 850, 900, 950 and 990 have been proposed, their production and application in jewellery manufacture has been organized. To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used. The ingots heat treatment conditions, as well as semi-finished jewelry plastic deformation parameters have been determined.
基金supported by Research Funds from Chosun University,2007.
文摘As the aircraft and aerospace industry and the automobile industry are developed, the demand of reliable materials with high strength and high toughness is steadily increased. The grain miniature method which improves the ductility and the toughness simultaneously under high strength is the miniature of the casting microstructure. In this paper, the Nb which affects the austenite grain miniature is added by 0.00%, 0.03% and 0.06% in this steel and the ingot is manufactured in a vacuum induction melting furnace (VIM). The casting microstructure and the mechanical property of the maraging steel according to Nb contents are analyzed by conducting the solution annealing and the age hardening after hot rolling. In this result, a specimen containing 0.03% Nb is most miniature. When it does the long time age hardening, the precipitation estimated as the carbide is appeared. The mechanical properties are excellent if a specimen containing 0.06% Nb does the age hardening during 8 h in 482℃.
基金supported by the Independent Research and Development Project of the State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-03)National Science Fund for Distinguished Young Scholars(No.52025041)National Natural Science Foundation of China(Grant No.52104305)
文摘Considering the high melting point and high stability of SrO,it has potential applications in the field of the preparation of titanium alloys.To improve the hydration resistance,SrO samples with different ZrO_(2)additions were fabricated after firing at 1750℃for 6 h.The phase,the microstructure,and the hydration resistance of the samples were researched.The results show that the sample with 33 mol%ZrO_(2)addition possesses good hydration resistance with the mass gain after hydration for 13 days of less than 0.42 mass%.The SrO crucible with 33 mol%ZrO_(2)addition does not react with TiNi alloy melt during melting,which provides a support for searching new refractories with good hydration resistance for induction melting titanium alloys.
文摘Processing technologies for the mass production of aero and industrial gas turbine engine hot-section components made by the investment casting process are discussed. Howmet Corporation is involved in most of these technologies because of the end-user's desire for a finished part. These technologies include pattern-making (using a variety of wax and plastic materials, rapid prototyping, 'hard' tooling, and wax injection machines), silica-zircon and alumina cores that produce internal passages, shells for very large parts and for use with alloys containing reactive elements, Ni, Co, and Ti alloys that are cleaner than ever before,zirconia, silica, and mullite crucibles;computer-controls,robotics,and the manufacture of vacuum casting furnaces; cleaning and finishing equipment designed to quickly process parts with minimal variation,and post-casting operations including hot isostatic pressing (HIP),heat treating,coating,and machining. These technologies will be discussed along with process capabilities required by today's turbine hot-section component suppliers.
文摘The inductive skull melting technology has many advantages for melting of innovative materials in the field of glasses and oxides.It offers high processing temperatures and the compliance of necessary purities at the same time. Applicable materials are in particular optical glasses,which are applied for lenses,fibers or filters,because the skull melting technology allows high process temperatures and high purities of the final product.In the production of glass materials strong requirements have to be fulfilled regarding the optical characteristics,which are mainly defined and influenced by the melting of the raw material and the following refining process.An unsolved problem in the melting process of glasses and oxides using the inductive skull melting technology was in the past the unknown heat and mass transfer in the melt because temperature and melt flow measurements in the melt are practically impossible due to the high temperatures.On the other hand the temperature and velocity distribution in the melt is very important regarding the safety of the melting process,the process control for producing the required properties of the material or the further development of skull melting installations.The paper describes a new numerical model which is able to simulate the instationary 3D melt flow of glasses and oxides.The numerical model takes into account electromagnetic,convection and Marangoni forces.By this a comprehensive view of the hidden processes in the practical experiments could be obtained. By means of the new numerical model different glass and oxide melting processes were simulated and the results were compared with experimental results.The comparisons show first of all a very good agreement between experimental and numerical results at the melt surfaces.Additionally the numerical results allow to look much deeper inside the melt and show interesting new effects of the heat and mass transfer below the melt surface which were unknown before.
文摘A wide range of industrial metallurgical heating and melting processes are carried out using electrothermal and electromagnetic technologies.The application of electromagnetic processing offers many advantages from technological, ecological and economical point of view.Although the technology level of the electromagnetic heating and melting installations and processes used in the industry today is very high,there are still potentials for improvement and optimization.In this paper recent applications and future development trends for efficient use of electromagnetic processing technologies in metallurgical and non-metallic material processes are described along selected examples in the field of heating for melting,forging,joining and solidification.