Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power ...Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.展开更多
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies l...As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.展开更多
针对感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统应用场景中的信号反向传输需求,提出了一种基于LCL-S谐振拓扑的注入信号式ICPT电能信号共享通道系统。运用交流阻抗法对所提出的系统的电能通道与信号通道分别进行了...针对感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统应用场景中的信号反向传输需求,提出了一种基于LCL-S谐振拓扑的注入信号式ICPT电能信号共享通道系统。运用交流阻抗法对所提出的系统的电能通道与信号通道分别进行了理论分析,建立了数学模型。以负载得到的电压恒定为前提,兼顾信号调制解调结构的影响,分析计算了系统参数,并搭建了MATLAB/Simulink验证模型。仿真结果表明,信号传递电路引入后,负载可以实现恒压,系统能量传输正常,在保证能量传输的情况下,可以实现信号的反向传输。最后按照仿真模型搭建了实际电路,验证了所提出的系统的可行性。展开更多
By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represente...By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represented as a long wave radio system operating at Tremendously Low Frequency(TLF).Results again confirm that the“near-field”is Tesla’s“dynamic gravity”,better known to engineers as dynamic braking or to physicists as centripetal acceleration,or simply(g).Timewave theory is invented,and the relationship of reflected timewaves and time travel explored.A new law of the Sun is proposed as well as the merging of Einstein’s equation with acoustics and cosmic superstring theory.A new law of cosmic efficiency is also proposed that equates vibratory force and pressure with volume acceleration of the solar system.Lorentz force is broken down into centripetal and gravitational waves.Ten-dimensional cosmic superstring theory is espoused versus the aging three-dimensional Maxwellian model.Spherical antenna patterns for planets are presented and flux transfer frequency is calculated using distance to planets as wavelengths.The galactic grid operates at a Schumann Resonance of 7.83 Hz,which is derived from the science of dark energy and dark matter.The Sun and the planets are tuned to transmit and receive electrical power like resonating Tesla coils.The Earth’s stator winding has been modeled as a toroid tesla coil and the armature as a spherical armature.The equation for everything is born.展开更多
We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance...We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance of the system are systematically analyzed through mathematical methods.A circuit simulation model and a finite element analysis(FEA)simulation model are developed to study the power losses of the system,including copper loss in coils,semiconductor loss in circuits,and eddy current loss in transmission media.The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems.Calculation results and simulation results are validated by relevant experiments of the prototype system.The output power of the prototype system is up to 45 W and the efficiency is up to 0.84.The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage.When the output power reaches 500 W,the efficiency is expected to exceed 0.94.The efficiency can be further improved by choosing proper semiconductors and coils.The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.展开更多
为满足感应耦合电能传输(inductively coupled power transfer,ICPT)系统在实现电能正向无线传输的同时,对副边电路状态信息的采集与反向传输,基于ICPT系统电能耦合传输通道,提出了一种在负载变化情况下,电能与信号反向同步传输ICPT系统...为满足感应耦合电能传输(inductively coupled power transfer,ICPT)系统在实现电能正向无线传输的同时,对副边电路状态信息的采集与反向传输,基于ICPT系统电能耦合传输通道,提出了一种在负载变化情况下,电能与信号反向同步传输ICPT系统,并对其控制方法进行了深入研究。该系统在副边增加信号调制电容,检测负载大小以确定具体的信号调制方案,通过切入与切出该调制电容以改变原边电流波形包络,进而将数字信号调制到系统中,这样原边在发射电能的同时接收来自副边的状态信息,最后通过设计信号解调机构,复原信号。首先介绍了ICPT系统电能与信号同步传输原理,在此基础上,提出电能与信号反向同步传输ICPT系统;然后,通过对该系统进行建模分析得到负载变化情况下不同的信号调制策略,并对系统变负载情况下系统特性进行了分析和研究;最后,针对理论分析进行了仿真与实验验证,实验实现了ICPT系统在电能正向传输情况下的信号的反向低误码率传输。该研究结果可以为ICPT系统电能与信号反向同步传输系统的设计与研究提供参考。展开更多
为保证感应耦合电能传输(inductively coupled power transfer,ICPT)系统在动态负载工作模式下频率和输出电压的稳定性,提出一种通过对ICPT系统谐振耦合拓扑机构优化选型,并对系统参数进行优化设计,从而实现系统稳频稳压(stable frequen...为保证感应耦合电能传输(inductively coupled power transfer,ICPT)系统在动态负载工作模式下频率和输出电压的稳定性,提出一种通过对ICPT系统谐振耦合拓扑机构优化选型,并对系统参数进行优化设计,从而实现系统稳频稳压(stable frequency stable voltage,SFSV)输出的新方法。通过对系统谐振网络等效电路进行分析,给出动态负载工作模式下ICPT系统谐振耦合机构优化选型依据,并给出系统谐振耦合环节参数优化设计步骤和方法。最后,通过实验验证理论分析的正确性。展开更多
针对利用感应耦合电能传输(inductively coupled power transfer,ICPT)系统电能传输通道实现数字信号实时、双向传输问题,提出一种基于载波方式实现信号传输的新方法。电能传输耦合机构作为电能与信号传输的共享通道,可以传输电能与信...针对利用感应耦合电能传输(inductively coupled power transfer,ICPT)系统电能传输通道实现数字信号实时、双向传输问题,提出一种基于载波方式实现信号传输的新方法。电能传输耦合机构作为电能与信号传输的共享通道,可以传输电能与信号这两种不同频率的波。信号加载和检波电路直接并联在电能传输耦合机构上,并在电能传输谐振电容与耦合机构间串联阻波电路,数字信号经调制后加载到传输通道,然后直接经过电能传输耦合机构传输,避免通过电能传输谐振电容而被削弱。通过分析电能传输及信号传输通道的衰减增益,以及电能传输对信号传输的干扰,确定所提方法的可行性,最后搭建实验平台验证所提方法的正确性。展开更多
基金This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1201003.
文摘Traditional power supply method for moving electric railway vehicles is based on contact type power collection technology.This sometimes cannot meet the requirements of modern rail transportation.A new wireless power transfer(WPT)technology can offer significant benefits in modern rail transportation particularly in some stringent environments.This paper reviews the status and the development of rail transit power supply technology,and introduces a new challenging technology--inductive power transfer(IPT)technology for rail transit.Tesla established the underpinning of IPT technology and creatively and significantly demonstrated power transfer by using highly resonant tuned coils long time ago.However,only in recent years the IPT technology has been significantly improved including the transfer air-gap length,transfer efficiency,coupling factor,power transfer capability and so on.This is mainly due to innovative semiconductor switches,higher control frequency,better coil designs and high performance material,new track and vehicle construction techniques.Recent advances in IPT for rail transit and major milestones of the developments are summarized in this paper.Some important technical issues such as coupling coil structures,power supply schemes,segmentation switching techniques for long-distance power supply,and bidirectional IPT systems for braking energy feedback are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金supported by the National High-Tech Research & Development Program of China ("863" Program) (Grant No. 2012AA050210)the National Natural Science Foundation of China (Grant No. 51177011)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ11_0150)Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘As an emerging research field,inductively coupled wireless power transfer(ICWPT) technology has attracted wide spread attention recently.In this paper,the maximum power transfer performances of four basic topologies labeled as SS,SP,PS and PP are investigated.By modeling the equivalent circuits of these topologies in high frequency(HF),the primary resonance compensation capacitances for maximum power transfer capability are deduced.It is found that these capacitances fluctuate with load resistance change,which is disadvantageous to SP,PS and PP topologies and an obstacle to their practical applications as well.To solve this problem,a phase controlled inductor circuit is proposed.By adjusting the triggering angle,the real-time dynamic tuning control can be achieved to guarantee maximum power transfer.Finally,simulations and experiments show that the proposed method is of great effectiveness and reliability to solve the issue of resonance compensation capacitance fluctuation with load change and to guarantee the flexible applications of all topologies.
文摘针对感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统应用场景中的信号反向传输需求,提出了一种基于LCL-S谐振拓扑的注入信号式ICPT电能信号共享通道系统。运用交流阻抗法对所提出的系统的电能通道与信号通道分别进行了理论分析,建立了数学模型。以负载得到的电压恒定为前提,兼顾信号调制解调结构的影响,分析计算了系统参数,并搭建了MATLAB/Simulink验证模型。仿真结果表明,信号传递电路引入后,负载可以实现恒压,系统能量传输正常,在保证能量传输的情况下,可以实现信号的反向传输。最后按照仿真模型搭建了实际电路,验证了所提出的系统的可行性。
文摘By representing the Earth as a rotating spherical antenna several historic and scientific breakthroughs are achieved.Visualizing the Sun as a transmitter and the planets as receivers the solar system can be represented as a long wave radio system operating at Tremendously Low Frequency(TLF).Results again confirm that the“near-field”is Tesla’s“dynamic gravity”,better known to engineers as dynamic braking or to physicists as centripetal acceleration,or simply(g).Timewave theory is invented,and the relationship of reflected timewaves and time travel explored.A new law of the Sun is proposed as well as the merging of Einstein’s equation with acoustics and cosmic superstring theory.A new law of cosmic efficiency is also proposed that equates vibratory force and pressure with volume acceleration of the solar system.Lorentz force is broken down into centripetal and gravitational waves.Ten-dimensional cosmic superstring theory is espoused versus the aging three-dimensional Maxwellian model.Spherical antenna patterns for planets are presented and flux transfer frequency is calculated using distance to planets as wavelengths.The galactic grid operates at a Schumann Resonance of 7.83 Hz,which is derived from the science of dark energy and dark matter.The Sun and the planets are tuned to transmit and receive electrical power like resonating Tesla coils.The Earth’s stator winding has been modeled as a toroid tesla coil and the armature as a spherical armature.The equation for everything is born.
基金Project supported by the National High-Tech R&D Program of China(No.2013AA09A414)the National Natural Science Foundation of China(No.51221004)the Interdisciplinary Research Foundation of Zhejiang University(No.2012HY003A)
文摘We develop a new kind of underwater inductive coupling power transfer(ICPT)system to evaluate wireless power transfer in autonomous underwater vehicle(AUV)docking applications.Parameters that determine the performance of the system are systematically analyzed through mathematical methods.A circuit simulation model and a finite element analysis(FEA)simulation model are developed to study the power losses of the system,including copper loss in coils,semiconductor loss in circuits,and eddy current loss in transmission media.The characteristics of the power losses can provide guidelines to improve the efficiency of ICPT systems.Calculation results and simulation results are validated by relevant experiments of the prototype system.The output power of the prototype system is up to 45 W and the efficiency is up to 0.84.The preliminary results indicate that the efficiency will increase as the transmission power is raised by increasing the input voltage.When the output power reaches 500 W,the efficiency is expected to exceed 0.94.The efficiency can be further improved by choosing proper semiconductors and coils.The analysis methods prove effective in predicting the performance of similar ICPT systems and should be useful in designing new systems.
文摘为满足感应耦合电能传输(inductively coupled power transfer,ICPT)系统在实现电能正向无线传输的同时,对副边电路状态信息的采集与反向传输,基于ICPT系统电能耦合传输通道,提出了一种在负载变化情况下,电能与信号反向同步传输ICPT系统,并对其控制方法进行了深入研究。该系统在副边增加信号调制电容,检测负载大小以确定具体的信号调制方案,通过切入与切出该调制电容以改变原边电流波形包络,进而将数字信号调制到系统中,这样原边在发射电能的同时接收来自副边的状态信息,最后通过设计信号解调机构,复原信号。首先介绍了ICPT系统电能与信号同步传输原理,在此基础上,提出电能与信号反向同步传输ICPT系统;然后,通过对该系统进行建模分析得到负载变化情况下不同的信号调制策略,并对系统变负载情况下系统特性进行了分析和研究;最后,针对理论分析进行了仿真与实验验证,实验实现了ICPT系统在电能正向传输情况下的信号的反向低误码率传输。该研究结果可以为ICPT系统电能与信号反向同步传输系统的设计与研究提供参考。
文摘为保证感应耦合电能传输(inductively coupled power transfer,ICPT)系统在动态负载工作模式下频率和输出电压的稳定性,提出一种通过对ICPT系统谐振耦合拓扑机构优化选型,并对系统参数进行优化设计,从而实现系统稳频稳压(stable frequency stable voltage,SFSV)输出的新方法。通过对系统谐振网络等效电路进行分析,给出动态负载工作模式下ICPT系统谐振耦合机构优化选型依据,并给出系统谐振耦合环节参数优化设计步骤和方法。最后,通过实验验证理论分析的正确性。
文摘针对利用感应耦合电能传输(inductively coupled power transfer,ICPT)系统电能传输通道实现数字信号实时、双向传输问题,提出一种基于载波方式实现信号传输的新方法。电能传输耦合机构作为电能与信号传输的共享通道,可以传输电能与信号这两种不同频率的波。信号加载和检波电路直接并联在电能传输耦合机构上,并在电能传输谐振电容与耦合机构间串联阻波电路,数字信号经调制后加载到传输通道,然后直接经过电能传输耦合机构传输,避免通过电能传输谐振电容而被削弱。通过分析电能传输及信号传输通道的衰减增益,以及电能传输对信号传输的干扰,确定所提方法的可行性,最后搭建实验平台验证所提方法的正确性。