Discusses the significance of induction motor constant resistance (IM R) load on the lower part of the PV curve of a power system and determines the conditions for stable operation of IM R load using fuzzy techniques ...Discusses the significance of induction motor constant resistance (IM R) load on the lower part of the PV curve of a power system and determines the conditions for stable operation of IM R load using fuzzy techniques and load flow.展开更多
MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for th...MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.展开更多
It is known that the power consumption and efficiency of an equipment owes directly to its power factor.The lower the power factor of the equipment the more the energy consumption of such equipment and vice-versa.Henc...It is known that the power consumption and efficiency of an equipment owes directly to its power factor.The lower the power factor of the equipment the more the energy consumption of such equipment and vice-versa.Hence,the need to develop an equipment to measure accurately the operating power factor of domestic and industrial equipment and appliances[1].The operating principle of this power factor meter design is based on Zero Crossing detection principle,the principle is utilized using Arduino Nano,instrument transformers,LM324 operational amplifier,generic resistor,generic XOR Gate 7488 and 2X16LCD.The input current and voltage signal is taken by the transformers and sent to the op-amp which carries out the zero crossing detection in order to get the time difference after which the microcontroller does the calculation to determine the power factor and the deficit reactive power which is then displayed on an interface[2].展开更多
Microgrid stability analysis is a critical issue especially due to the inverters’low-inertia nature.The voltage and current control loops influences on stability are researched frequently most of which focus on mediu...Microgrid stability analysis is a critical issue especially due to the inverters’low-inertia nature.The voltage and current control loops influences on stability are researched frequently most of which focus on medium and high-frequency characteristic.Although the complete state-space model aims at low-frequency characteristic,it is too complicated and the calculation amount is huge with the scale of the microgrid increasing.One available reduced-order model of an inverter is simple,but it is suitable for only single inverter without network dynamic in microgrid.To fill in these gaps,a novel modeling method is proposed in this paper to investigate the low-frequency instability phenomenon and describe the whole DG connected system including network.In consideration of the high penetration level of induction motor(IM)loads and constant power(CP)loads in practical applications,the low-frequency mathematical model of IM and CP loads on the basis of static load is also built in this paper.Simulation and experimental results verify the effectiveness of the proposed model.展开更多
文摘Discusses the significance of induction motor constant resistance (IM R) load on the lower part of the PV curve of a power system and determines the conditions for stable operation of IM R load using fuzzy techniques and load flow.
文摘MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.
文摘It is known that the power consumption and efficiency of an equipment owes directly to its power factor.The lower the power factor of the equipment the more the energy consumption of such equipment and vice-versa.Hence,the need to develop an equipment to measure accurately the operating power factor of domestic and industrial equipment and appliances[1].The operating principle of this power factor meter design is based on Zero Crossing detection principle,the principle is utilized using Arduino Nano,instrument transformers,LM324 operational amplifier,generic resistor,generic XOR Gate 7488 and 2X16LCD.The input current and voltage signal is taken by the transformers and sent to the op-amp which carries out the zero crossing detection in order to get the time difference after which the microcontroller does the calculation to determine the power factor and the deficit reactive power which is then displayed on an interface[2].
基金This work was supported by the National key research and development plan 2016YFB0900300National Natural Science Foundation of China under Grant51677162Natural Science Foundation of Hebei Province E2017203337。
文摘Microgrid stability analysis is a critical issue especially due to the inverters’low-inertia nature.The voltage and current control loops influences on stability are researched frequently most of which focus on medium and high-frequency characteristic.Although the complete state-space model aims at low-frequency characteristic,it is too complicated and the calculation amount is huge with the scale of the microgrid increasing.One available reduced-order model of an inverter is simple,but it is suitable for only single inverter without network dynamic in microgrid.To fill in these gaps,a novel modeling method is proposed in this paper to investigate the low-frequency instability phenomenon and describe the whole DG connected system including network.In consideration of the high penetration level of induction motor(IM)loads and constant power(CP)loads in practical applications,the low-frequency mathematical model of IM and CP loads on the basis of static load is also built in this paper.Simulation and experimental results verify the effectiveness of the proposed model.