In the inductively coupled data transmission system of the mooring buoy, the carrier signal frequency of the transmission channel is limited due to the inherent characteristics of the system, resulting in limited chan...In the inductively coupled data transmission system of the mooring buoy, the carrier signal frequency of the transmission channel is limited due to the inherent characteristics of the system, resulting in limited channel bandwidth. The limited channel bandwidth limits the increase in inductively coupled data transmission rate.In order to improve the inductively coupled data transmission rate of mooring buoy as much as possible without damaging the data transmission performance, a new method was proposed in this paper. The method is proposed to improve the data transmission rate by selecting the appropriate carrier signal frequencies based on the principle of maximizing the amplitude value of amplitude-frequency characteristic curve of the system. Research has been done according to this method as follows. Firstly, according to the inductively coupled transmission mooring buoy structure, the inductively coupled data transmission circuit model was established. The binary frequency shift keying(2FSK) digital signal modulation mode was selected. Through theoretical analysis, the relation between the carrier signal frequency and the data transmission performance, the relation between the carrier signal frequency and the 2FSK signal bandwidth were obtained. Secondly, the performance and the bandwidth of the signal transmission were studied for the inherent characteristics of the actual inductively coupled data transmission system. The amplitude-frequency characteristic of the system was analyzed by experiments. By selecting the appropriate carrier signal frequency parameters, an excellent data transmission performance was guaranteed and a large 2FSK signal bandwidth was obtained. Finally, an inductively coupled data transmission rate optimization experiment and a bit error rate analysis experiment were designed and carried out. The results show that the high-speed and reliable data transmission of the system was realized and the rate can reach 100 kbps.展开更多
Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data tra...Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data transmission in marine environment detection at home.In order to improve the transmission performance of the system in practical communication system,optimizing the design by directly changing the circuit parameters is time-consuming and expensive.Therefore,a set of inductive coupling transmission channel analysis system is designed based on virtual instrument to improve the transmission rate and reliability of inductive coupling transmission system.The bit error rate of channel system at different frequency and noise levels are tested by using three kinds of digital modulation mode including amplitude shift keying(ASK),frequency shift keying(FSK)and differential phase shift keying(DPSK),taking square wave and sine wave as a carrier.Finally,the sine wave is selected to be carrier signal and DPSK is chosen to be modulation mode.The reliable transmission of signal with the error rate less than0.005and the transmission rate of9600bps,at the noise level of-10dB,is realized and verified by the debugging circuit experiments with multi-nodes in the laboratory.The study provides an important experimental evidence for improving signal transmission reliability of inductive coupling transmission system.展开更多
This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- ...This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/ 3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neu- rostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD'process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neu- rostimulators.展开更多
With the aim of sending electric power to autonomous underwater vehicles(AUVs), an automatic wireless power supply system by means of electromagnetic coupler was proposed. An equivalent circuit of the electromagnetic ...With the aim of sending electric power to autonomous underwater vehicles(AUVs), an automatic wireless power supply system by means of electromagnetic coupler was proposed. An equivalent circuit of the electromagnetic coupler with compensating capacitors was presented to analyze the performance of the system.The magnetizing inductance and leakage inductance, which are important for choosing compensating capacitors,were calculated by finite element analysis(FEA) methods. Then the voltage gain, power loss and system efficiency were analyzed to optimize the winding turns. Finally, a phase-shift full bridge zero-voltage-switching converter and an electromagnetic coupler were produced. The experimental results demonstrated that the proposed system has a high voltage gain with small variation and sufficient power feeding.展开更多
We show that resonant tunneling of electromagnetic (EM) fields can occur through a six-layer structure con- sisting of two pairs of bilayer slabs: one'being an epsilon-negative layer and the other being a mu-negat...We show that resonant tunneling of electromagnetic (EM) fields can occur through a six-layer structure con- sisting of two pairs of bilayer slabs: one'being an epsilon-negative layer and the other being a mu-negative layer with a double-positive (DPS) medium and air. This type of tunneling is accompanied by high-magnetic field. The Poynting vector distributions and the material dissipation are studied. Our results demonstrate that the EM field in the structure is controlled flexibly by single-negative media and DPS slab. Therefore, this structure has potential applications in wireless energy transfer.展开更多
基金supported by the National Natural Science Foundation of China [Grant number 61733012]Qingdao Ocean Engineering and Technology Think Tank Joint Fund Project [Grant number 20190131-2]the Shandong Provincial Natural Science Fund Project [Grant number ZR2017MEE072]。
文摘In the inductively coupled data transmission system of the mooring buoy, the carrier signal frequency of the transmission channel is limited due to the inherent characteristics of the system, resulting in limited channel bandwidth. The limited channel bandwidth limits the increase in inductively coupled data transmission rate.In order to improve the inductively coupled data transmission rate of mooring buoy as much as possible without damaging the data transmission performance, a new method was proposed in this paper. The method is proposed to improve the data transmission rate by selecting the appropriate carrier signal frequencies based on the principle of maximizing the amplitude value of amplitude-frequency characteristic curve of the system. Research has been done according to this method as follows. Firstly, according to the inductively coupled transmission mooring buoy structure, the inductively coupled data transmission circuit model was established. The binary frequency shift keying(2FSK) digital signal modulation mode was selected. Through theoretical analysis, the relation between the carrier signal frequency and the data transmission performance, the relation between the carrier signal frequency and the 2FSK signal bandwidth were obtained. Secondly, the performance and the bandwidth of the signal transmission were studied for the inherent characteristics of the actual inductively coupled data transmission system. The amplitude-frequency characteristic of the system was analyzed by experiments. By selecting the appropriate carrier signal frequency parameters, an excellent data transmission performance was guaranteed and a large 2FSK signal bandwidth was obtained. Finally, an inductively coupled data transmission rate optimization experiment and a bit error rate analysis experiment were designed and carried out. The results show that the high-speed and reliable data transmission of the system was realized and the rate can reach 100 kbps.
基金National Natural Science Foundation of China(No.41506122)
文摘Inductive coupling transmission system is an important measurement device for acquiring and transmitting marine environmental information.However,low transmission rate cannot meet the current demand for large data transmission in marine environment detection at home.In order to improve the transmission performance of the system in practical communication system,optimizing the design by directly changing the circuit parameters is time-consuming and expensive.Therefore,a set of inductive coupling transmission channel analysis system is designed based on virtual instrument to improve the transmission rate and reliability of inductive coupling transmission system.The bit error rate of channel system at different frequency and noise levels are tested by using three kinds of digital modulation mode including amplitude shift keying(ASK),frequency shift keying(FSK)and differential phase shift keying(DPSK),taking square wave and sine wave as a carrier.Finally,the sine wave is selected to be carrier signal and DPSK is chosen to be modulation mode.The reliable transmission of signal with the error rate less than0.005and the transmission rate of9600bps,at the noise level of-10dB,is realized and verified by the debugging circuit experiments with multi-nodes in the laboratory.The study provides an important experimental evidence for improving signal transmission reliability of inductive coupling transmission system.
基金Project supported by the National Natural Science Foundation of China(Nos.61076023,61178051)the National Basic Research Program of China(No.2011CB933203)the High-Tech-Program of China(No.2012AA030308)
文摘This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/ 3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neu- rostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD'process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neu- rostimulators.
基金the National High Technology Research and Development Program(863) of China(No.2012AA8094033)
文摘With the aim of sending electric power to autonomous underwater vehicles(AUVs), an automatic wireless power supply system by means of electromagnetic coupler was proposed. An equivalent circuit of the electromagnetic coupler with compensating capacitors was presented to analyze the performance of the system.The magnetizing inductance and leakage inductance, which are important for choosing compensating capacitors,were calculated by finite element analysis(FEA) methods. Then the voltage gain, power loss and system efficiency were analyzed to optimize the winding turns. Finally, a phase-shift full bridge zero-voltage-switching converter and an electromagnetic coupler were produced. The experimental results demonstrated that the proposed system has a high voltage gain with small variation and sufficient power feeding.
基金supported by the National Natural Science Foundation of China under Grant No.11274225
文摘We show that resonant tunneling of electromagnetic (EM) fields can occur through a six-layer structure con- sisting of two pairs of bilayer slabs: one'being an epsilon-negative layer and the other being a mu-negative layer with a double-positive (DPS) medium and air. This type of tunneling is accompanied by high-magnetic field. The Poynting vector distributions and the material dissipation are studied. Our results demonstrate that the EM field in the structure is controlled flexibly by single-negative media and DPS slab. Therefore, this structure has potential applications in wireless energy transfer.