An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect bra...An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.展开更多
This paper presents a differential low power low noise amplifier designed for the wireless sensor network (WSN) in a TSMC 0.18μm RF CMOS process.A two-stage cross-coupling cascaded common-gate(CG) topology has be...This paper presents a differential low power low noise amplifier designed for the wireless sensor network (WSN) in a TSMC 0.18μm RF CMOS process.A two-stage cross-coupling cascaded common-gate(CG) topology has been designed as the amplifier.The first stage is a capacitive cross-coupling topology.It can reduce the power and noise simultaneously.The second stage is a positive feedback cross-coupling topology,used to set up a negative resistance to enhance the equivalent Q factor of the inductor at the load to improve the gain of the LNA.A differential inductor has been designed as the load to achieve reasonable gain.This inductor has been simulated by the means of momentum electromagnetic simulation in ADS.A "double-π" circuit model has been built as the inductor model by iteration in ADS.The inductor has been fabricated separately to verify the model. The LNA has been fabricated and measured.The LNA works well centered at 2.44 GHz.The measured gain S_(21) is variable with high gain at 16.8 dB and low gain at 1 dB.The NF(noise figure) at high gain mode is 3.6 dB,the input referenced 1 dB compression point(IP1dB) is about -8 dBm and the IIP3 is 2 dBm at low gain mode.The LNA consumes about 1.2 mA current from 1.8 V power supply.展开更多
A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have bee...A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is –30 dB.展开更多
基金Project supported by the National Natural Science Foundation of China(No.61674036)
文摘An improved single-π equivalent circuit model for on-chip inductors in the GaAs process is presented in this paper. Considering high order parasites, the model is established by comprising an improved skin effect branch and a substrate lateral coupling branch. The parameter extraction is based on an improved characteristic function approach and vector fitting method. The model has better simulation than the previous work over the measured data of 2.5r and 4.5r on-chip inductors in the GaAs process.
基金supported by the National High Technology Research and Development Program of China(No.2007AA01Z2A7)the Special Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements(No.BA2010073)
文摘This paper presents a differential low power low noise amplifier designed for the wireless sensor network (WSN) in a TSMC 0.18μm RF CMOS process.A two-stage cross-coupling cascaded common-gate(CG) topology has been designed as the amplifier.The first stage is a capacitive cross-coupling topology.It can reduce the power and noise simultaneously.The second stage is a positive feedback cross-coupling topology,used to set up a negative resistance to enhance the equivalent Q factor of the inductor at the load to improve the gain of the LNA.A differential inductor has been designed as the load to achieve reasonable gain.This inductor has been simulated by the means of momentum electromagnetic simulation in ADS.A "double-π" circuit model has been built as the inductor model by iteration in ADS.The inductor has been fabricated separately to verify the model. The LNA has been fabricated and measured.The LNA works well centered at 2.44 GHz.The measured gain S_(21) is variable with high gain at 16.8 dB and low gain at 1 dB.The NF(noise figure) at high gain mode is 3.6 dB,the input referenced 1 dB compression point(IP1dB) is about -8 dBm and the IIP3 is 2 dBm at low gain mode.The LNA consumes about 1.2 mA current from 1.8 V power supply.
基金supported by the National Natural Science Foundation of China(No.61401025)
文摘A small signal coupling model is developed to analyze the coupling between two LNAs. The mutual inductance between the adjacent on-chip inductors is considered responsible for this coupling. A set of formulas have been derived to quantitatively predict the coupling effects. Based on our analysis, a quick estimation can be made to see which pair of inductors plays a key role in evaluating the coupling between the LNAs. Source inductors of two LNAs are placed closely while the load inductors are far apart according to the analysis. To validate the proposed theory, two 2 GHz LNAs are fabricated. The LNAs have a peak gain of 18 dB and NF of 1.4 dB. The coupling between the LNAs is –30 dB.