Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing productio...Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing production of cereal crop grains has been reduced to one third of the potential crop grains production owing to land degradation and poor farming practices. It is necessary to assess risk of soil loss and identify appropriate controlling measures to address issues of low agriculture productivity and water insecurity in the region. In the present study, severity of soil loss was predicted using Revised Universal Loss Equation(RUSLE) and ecological measures were identified for sustainable mountain agriculture in the HKH region of Upper Indus Basin, Pakistan. Overall 62.6% area was found to have very low risk of soil loss, i.e., <5 t/(ha·yr), 15.8% area low risk, i.e., 5-25 t/(ha·yr) and 7.5% area moderate risk, i.e., 25-50 t/(ha·yr) in the region. The risk was high, i.e., 50-100 t/(ha·yr) and very high, i.e., >100 t/(ha·yr) in about 6.8% and 7.4% areas respectively. The mean rate of soil loss was about 41.9 t/(ha·yr) in the Hindu Kush, 31.1 t/(ha·yr) in the Himalayas, 18.8 t/(ha·yr) in the Karakoram and overall 29.7 t/(ha·yr) in the three HKH ranges. As such no considerable measures have been adopted by the communities for restoration of the degraded areas except raising fruit/farm trees and supporting limited social forestry for their livelihoods. The slopes cleared for cultivation and susceptible to erosion may be stabilized through sowing/planting of multi-purpose plant species and formation of proper bench terraces. The conservation of forest ecosystem and pastures at higher elevations would help in reducing overland water flow, risk of flash flood hazard and minimizing sediment loads in the downstream. It is essential to adopt site-specific resource conservation techniques and restore possible ecosystem health for sustainable agriculture and economic development in the region in future.展开更多
Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a sig...Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning.展开更多
The Indus river basin(IRB)is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ^(18)O and δ^(2)H)across IRB is a critical asp...The Indus river basin(IRB)is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ^(18)O and δ^(2)H)across IRB is a critical aspect that can provide deeper insights for investigating complex hydrological processes.This work analyses the spatial pattern of the isotopic signature using a comprehensive compilation of available datasets of the Global Network of Isotopes in River(GNIR)and Global Network of Isotopes in Precipitation(GNIP),along with the previously published isotopic studies in the Indus basin.Additionally,this work provides a detailed comparison of the isotopic signature of the Upper Indus Basin(UIB),and Lower Indus Basin(LIB).The IRBs waterline was found to beδ^(2)H=7.89×δ^(18)O+13.51,which shows a close similarity with the Global Meteoric Water Line(GMWL),indicating the meteoric origin of the water with insignificant secondary evaporation prevailing across the basin.The Main Indus Channel(MIC)river water line(δ^(2)H=8.88×δ^(18)O+26.05)indicates a major contribution from the meteoric origin(precipitation/rain)of water with minimal effect of evaporation processes.The water line for UIB samples,(δ^(2)H=7.88×δ^(18)O+11.94)was found to be moderately higher in slope than LIB samples(δ^(2)H=7.17×δ^(18)O+7.16).However,the slopes of both UIB and LIB river water lines closely approached the slope of GMWL and were consistent with the slope of IRB water line,which indicates similarity in contribution of water sources.The higher slope and intercept in UIB suggest that meteoric water sources contributed to streamflow viz.from snow/glacier with insignificant evapotranspiration,which is also validated by the scarce vegetation cover in the UIB.However,the lower slope and intercept in LIB suggest stream water contribution from significantly evaporated groundwater and precipitation with a complete homogenization of discharge coming from the UIB.Results substantiate that distinct isotopic signatures found in different stretches of the IRB and along the MIC are caused by variations in basin characteristics,hydro-meteorological processes,water mixing,and minor influence of anthropogenic variables.展开更多
Climate change strongly influences the available water resources in a watershed due to direct linkage of atmospheric driving forces and changes in watershed hydrological processes.Understanding how these climatic chan...Climate change strongly influences the available water resources in a watershed due to direct linkage of atmospheric driving forces and changes in watershed hydrological processes.Understanding how these climatic changes affect watershed hydrology is essential for human society and environmental processes.Coupled Model Intercomparison Project phase 6(CMIP6)dataset of three GCM's(BCC-CSM2-MR,INM-CM5-0,and MPIESM1-2-HR)with resolution of 100 km has been analyzed to examine the projected changes in temperature and precipitation over the Astore catchment during 2020-2070.Bias correction method was used to reduce errors.In this study,statistical significance of trends was performed by using the Man-Kendall test.Sen's estimator determined the magnitude of the trend on both seasonal and annual scales at Rama Rattu and Astore stations.MPI-ESM1-2-HR showed better results with coefficient of determination(COD)ranging from 0.70-0.74 for precipitation and 0.90-0.92 for maximum and minimum temperature at Astore,Rama,and Rattu followed by INM-CM5-0 and BCC-CSM2-MR.University of British Columbia Watershed model was used to attain the future hydrological series and to analyze the hydrological response of Astore River Basin to climate change.Results revealed that by the end of the 2070s,average annual precipitation is projected to increase up to 26.55%under the SSP1-2.6,6.91%under SSP2-4.5,and decrease up to 21.62%under the SSP5-8.5.Precipitation also showed considerable variability during summer and winter.The projected temperature showed an increasing trend that may cause melting of glaciers.The projected increase in temperature ranges from-0.66℃ to 0.50℃,0.9℃ to 1.5℃ and 1.18℃ to 2℃ under the scenarios of SSP1-2.6,SSP2-4.5 and SSP5-8.5,respectively.Simulated streamflows presented a slight increase by all scenarios.Maximum streamflow was generated under SSP5-8.5 followed by SSP2-4.5 and SSP1-2.6.The snowmelt and groundwater contributions to streamflow have decreased whereas rainfall and glacier melt components have increased on the other hand.The projected streamflows(2020-2070)compared to the control period(1990-2014)showed a reduction of 3%-11%,2%-9%,and 1%-7%by SSP1-2.6,SSP2-4.5,and SSP5-8.5,respectively.The results revealed detailed insights into the performance of three GCMs,which can serve as a blueprint for regional policymaking and be expanded upon to establish adaption measures.展开更多
Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the c...Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.展开更多
Land surface temperature(LST)is a crucial parameter for understanding the Earth's surface energy balance,which provides insights into climate dynamics and local environmental conditions.Thus,the present study aims...Land surface temperature(LST)is a crucial parameter for understanding the Earth's surface energy balance,which provides insights into climate dynamics and local environmental conditions.Thus,the present study aims to evaluate the spatial and elevation-wise trends in the daytime,nighttime,and mean LST across the Indus River Basin(IRB)using MODIS 8-day product for the period between 2002 and 2022.The elevation,cloud cover,and land cover type data are used for explaining the emerging LST trends.The Theil slope estimator and MannKendall significance test were used for estimating the seasonal and annual LST trends.The findings show warming in mean daytime(0.020-0.024℃/yr)(except winter and post-monsoon),nighttime(0.013-0.049℃/yr),and mean(0.001-0.042℃/yr)LST in all the seasons(highest in monsoon).The annual mean nighttime LST(0.025℃/yr)is rising significantly faster than the mean daytime LST(0.0016℃/yr),showing the presence of a“nighttime warming effect”,which possibly increases human discomfort,particularly during the warm pre-monsoon and humid monsoon season.Elevation-dependent warming(EDW)is predominant in mean daytime LST in two elevation zones,namely(i)0-3 km and(ii)above 4 km,in all seasons,except in post-monsoon.In contrast,EDW in mean nighttime LST is observed up to 3 km and above 6 km in the basin in all the seasons,excluding post-monsoon.The warming trend in LST may be attributed to rising atmospheric moisture,cloud cover,declining snow cover,and changes in land cover to non-vegetated land.However,further investigations will involve exploring the underlying factors contributing to the observed anomalies in nighttime LST,considering variables such as regional energy balance and atmospheric stability.This research contributes to an understanding of the thermal dynamics in the mountain basin,aiding in climate studies,land management,and the development of effective adaptation strategies in the IRB.展开更多
The Sohnari Member of the Early Eocene Laki Formation is massively deposited in the Southern Indus Basin of Pakistan and is considered a potential source rock to generate hydrocarbons.However,the detailed paleoclimati...The Sohnari Member of the Early Eocene Laki Formation is massively deposited in the Southern Indus Basin of Pakistan and is considered a potential source rock to generate hydrocarbons.However,the detailed paleoclimatic,paleoweathering,and depositional conditions of the Sohnari Member have not been studied earlier.This research mainly discusses the detailed mineralogical(bulk and clay)and elemental geochemistry of the Laki Formation from two outcrop sections(Jhimpir and Lakhra)in the Southern Indus Basin,Pakistan.The bulk minerals,including quartz(low),hematite,calcite,halite,gypsum,and clay minerals such as kaolinite,chlorite,smectite and illite have been discussed here.These results demonstrate the paleo-environment of studied area was arid with enhanced saline and weak to strong oxidizing depositional conditions.The chemical index of alteration(CIA)values in Jhimpir and Lakhra sections are in the ranges of 41.30-97.93 and 22.30-96.19,respectively,indicating that the Sohnari sediments experienced weak to intense chemical weathering in the source area.The interpretation of the A-CN-K ternary diagram is consistent with the clay mineral contents in the studied sediments,which is characterized by the predominance of kaolinite,gibbsite and chlorite,demonstrating the weak to strong weathering state under warm and humid climatic conditions.The chemical indices such as Sr/Ba,δU,V/Cr,Ni/Co,and Cu/Zn,U/Th and Ba/Ga show that Sohnari rocks of Early Eocene Laki Formation underwent strong evaporation,oxic water column with warm to humid and minor contact of cold climatic conditions.Based on our present data,it can be concluded that the sediments of Sohnari Member of Laki Formation from Jhimpir and Lakhra areas of Southern Indus Basin in Pakistan are related to Indio-Eurasian collision and came from the Indian shield rocks that were deposited in a brackish water body with a minor contact of the freshwater oxidizing paleo-environment depositional conditions.展开更多
Indus basin hosts many significant mineral deposits like gypsum and cement raw materials, gemstones, iron, coal, marble, dimension and construction stones, petroleum and water resources, world class pink salt and othe...Indus basin hosts many significant mineral deposits like gypsum and cement raw materials, gemstones, iron, coal, marble, dimension and construction stones, petroleum and water resources, world class pink salt and other many minerals in different regions which need further exploitation and development. The construction of new water dams in different regions are vital (for availability of cheap electricity), because of available barren and fertile lands and wastage of water as flood. Further the installation of more cement industries in different regions of Indus Basin especially in middle Indus (Sulaiman Range where gypsum, clays and limestones can be available via belt) can increase export to receive more foreign exchange and make local cement cheap for the sustainable development of Pakistan. 31 stratigraphic sequential sections at different sections of Indus basins are presented to know the variation and local stratigraphy. Further here three new titanosaur taxa are being described. Saraikimasoom is based on snout;Gspsaurus, (Maojandino), Nicksaurus and Khanazeem are based on cranial, vertebral and appendicular elements;Balochisaurus, Marisaurus, Pakisaurus, and 3 new genera and species Imrankhanhero zilefatmi, Qaikshaheen masoomniazi and Ikqaumishan smqureshi based on vertebral and appendicular elements;and Sulaimanisaurus and Khetranisaurus based on only caudal vertebrae. Although Pakistani Titanosaurians seem to be proliferated found from one horizon of Vitakri Formation just below the K-Pg boundary they have a wide range of diagnostic features and key elements among titanosaurs which can be used for comparison and phylogenetic analyses with broad updated character data set of titanosaurs.展开更多
基金project support by Ministry of National Food Security and Research, Islamabad for this study is highly appreciated。
文摘Soil erosion has resulted in removal of the topsoils containing fine soil particles and plant nutrients, causing decrease in soil fertility in the Hindu Kush, Karakoram and Himalaya(HKH) region. The existing production of cereal crop grains has been reduced to one third of the potential crop grains production owing to land degradation and poor farming practices. It is necessary to assess risk of soil loss and identify appropriate controlling measures to address issues of low agriculture productivity and water insecurity in the region. In the present study, severity of soil loss was predicted using Revised Universal Loss Equation(RUSLE) and ecological measures were identified for sustainable mountain agriculture in the HKH region of Upper Indus Basin, Pakistan. Overall 62.6% area was found to have very low risk of soil loss, i.e., <5 t/(ha·yr), 15.8% area low risk, i.e., 5-25 t/(ha·yr) and 7.5% area moderate risk, i.e., 25-50 t/(ha·yr) in the region. The risk was high, i.e., 50-100 t/(ha·yr) and very high, i.e., >100 t/(ha·yr) in about 6.8% and 7.4% areas respectively. The mean rate of soil loss was about 41.9 t/(ha·yr) in the Hindu Kush, 31.1 t/(ha·yr) in the Himalayas, 18.8 t/(ha·yr) in the Karakoram and overall 29.7 t/(ha·yr) in the three HKH ranges. As such no considerable measures have been adopted by the communities for restoration of the degraded areas except raising fruit/farm trees and supporting limited social forestry for their livelihoods. The slopes cleared for cultivation and susceptible to erosion may be stabilized through sowing/planting of multi-purpose plant species and formation of proper bench terraces. The conservation of forest ecosystem and pastures at higher elevations would help in reducing overland water flow, risk of flash flood hazard and minimizing sediment loads in the downstream. It is essential to adopt site-specific resource conservation techniques and restore possible ecosystem health for sustainable agriculture and economic development in the region in future.
基金the Banaras Hindu University,Varanasi,Uttar Pradesh(India),for providing a seed grant(Letter No.R/Dev/D/IoE/Equipment/Seed Grant-II/2022-23/52078)under the Institute of Eminence(IoE)Jyotsna Singh(Ref.No.210510120701),Subhash Singh(Ref.No.220510022095),and Purushottam Tiwari(Ref.No.210510406257)are grateful to the University Grants Commission(UGC)of the Ministry of Education,Government of India(New Delhi)for providing financial support to the present study+2 种基金the Copernicus Climate Change Service(C3S)team at the European Centre for Medium-Range Weather Forecasts(ECMWF)for providing ERA5 reanalysis data in the public domainreceived a seed grant from the Banaras Hindu University,Varanasi,Uttar Pradesh(India)(Letter No.R/Dev/D/IoE/Equipment/Seed Grant-II/2022-23/52078)under the Institute of Eminence(IoE)Jyotsna Singh(Ref.No.210510120701),Subhash Singh(Ref.No.220510022095),and Purushottam Tiwari(Ref.No.210510406257)received a fellowship from the University Grants Commission(UGC)of the Ministry of Education,Government of India(New Delhi)。
文摘Precipitable Water Vapor(PWV)constitutes a pivotal parameter within the domains of atmospheric science,and remote sensing due to its profound influence on Earth’s climate dynamics and weather patterns.It exerts a significant impact on atmospheric stability absorption and emission of radiation,thus engendering alterations in the Earth’s radiative equilibrium.As such,precise quantification of PWV holds the potential to enhance weather prognostication and fortify preparedness against severe meteorological phenomena.This study aimed to elucidate the spatial and temporal changes in seasonal and annual PWV across the Indus River Basin and its sub-basins using ERA5 reanalysis datasets.The present study used ERA5 PWV(entire atmospheric column),air temperature at 2 m(t2m)and 500 hPa(T_500hPa),evapotranspiration,and total cloud cover data from 1960 to 2021.Theil Sen slope estimator and Mann-Kendall test were used for trend analysis.Correlation and multiple regression methods were used to understand the association of PWV with other factors.The findings have unveiled the highest increase in mean PWV during the monsoon(0.40 mm/decade),followed by premonsoon(0.37 mm/decade),post-monsoon(0.27 mm/decade),and winter(0.19 mm/decade)throughout the study period.Additionally,the mean PWV exhibited the most pronounced positive trend in the sub-basin Lower Indus(LI),followed by Panjnad(P),Kabul(K),and Upper Indus(UI)across all seasons,except winter.Annual PWV has also risen in the Indus basin and its sub-basins over the last six decades.PWV exhibits a consistent upward trend up to an elevation of 3500 m within the basin which is most pronounced during the monsoon season,followed by the pre-monsoon.The escalating PWV within the basin is reasonably ascribed to increasing air temperatures,augmented evapotranspiration,and heightened cloud cover.These findings hold potential utility for pertinent authorities engaged in water resource management and planning.
基金the Department of Science and Technology for the INSPIRE PhD fellowshipsupported by the FIG-100779 grant and IIT Roorkee Institute Fellowship to N Raithe Department of Science and Technology through INSPIRE fellowship(IF170907)scheme(grant No.7053-106-044-428)to A Jahan。
文摘The Indus river basin(IRB)is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ^(18)O and δ^(2)H)across IRB is a critical aspect that can provide deeper insights for investigating complex hydrological processes.This work analyses the spatial pattern of the isotopic signature using a comprehensive compilation of available datasets of the Global Network of Isotopes in River(GNIR)and Global Network of Isotopes in Precipitation(GNIP),along with the previously published isotopic studies in the Indus basin.Additionally,this work provides a detailed comparison of the isotopic signature of the Upper Indus Basin(UIB),and Lower Indus Basin(LIB).The IRBs waterline was found to beδ^(2)H=7.89×δ^(18)O+13.51,which shows a close similarity with the Global Meteoric Water Line(GMWL),indicating the meteoric origin of the water with insignificant secondary evaporation prevailing across the basin.The Main Indus Channel(MIC)river water line(δ^(2)H=8.88×δ^(18)O+26.05)indicates a major contribution from the meteoric origin(precipitation/rain)of water with minimal effect of evaporation processes.The water line for UIB samples,(δ^(2)H=7.88×δ^(18)O+11.94)was found to be moderately higher in slope than LIB samples(δ^(2)H=7.17×δ^(18)O+7.16).However,the slopes of both UIB and LIB river water lines closely approached the slope of GMWL and were consistent with the slope of IRB water line,which indicates similarity in contribution of water sources.The higher slope and intercept in UIB suggest that meteoric water sources contributed to streamflow viz.from snow/glacier with insignificant evapotranspiration,which is also validated by the scarce vegetation cover in the UIB.However,the lower slope and intercept in LIB suggest stream water contribution from significantly evaporated groundwater and precipitation with a complete homogenization of discharge coming from the UIB.Results substantiate that distinct isotopic signatures found in different stretches of the IRB and along the MIC are caused by variations in basin characteristics,hydro-meteorological processes,water mixing,and minor influence of anthropogenic variables.
基金the Centre of Excellence in Water Resource Engineering,UET,LahoreCollege of Engineering,IT and Environment,Charles Darwin University,Australia for support in conducting this study。
文摘Climate change strongly influences the available water resources in a watershed due to direct linkage of atmospheric driving forces and changes in watershed hydrological processes.Understanding how these climatic changes affect watershed hydrology is essential for human society and environmental processes.Coupled Model Intercomparison Project phase 6(CMIP6)dataset of three GCM's(BCC-CSM2-MR,INM-CM5-0,and MPIESM1-2-HR)with resolution of 100 km has been analyzed to examine the projected changes in temperature and precipitation over the Astore catchment during 2020-2070.Bias correction method was used to reduce errors.In this study,statistical significance of trends was performed by using the Man-Kendall test.Sen's estimator determined the magnitude of the trend on both seasonal and annual scales at Rama Rattu and Astore stations.MPI-ESM1-2-HR showed better results with coefficient of determination(COD)ranging from 0.70-0.74 for precipitation and 0.90-0.92 for maximum and minimum temperature at Astore,Rama,and Rattu followed by INM-CM5-0 and BCC-CSM2-MR.University of British Columbia Watershed model was used to attain the future hydrological series and to analyze the hydrological response of Astore River Basin to climate change.Results revealed that by the end of the 2070s,average annual precipitation is projected to increase up to 26.55%under the SSP1-2.6,6.91%under SSP2-4.5,and decrease up to 21.62%under the SSP5-8.5.Precipitation also showed considerable variability during summer and winter.The projected temperature showed an increasing trend that may cause melting of glaciers.The projected increase in temperature ranges from-0.66℃ to 0.50℃,0.9℃ to 1.5℃ and 1.18℃ to 2℃ under the scenarios of SSP1-2.6,SSP2-4.5 and SSP5-8.5,respectively.Simulated streamflows presented a slight increase by all scenarios.Maximum streamflow was generated under SSP5-8.5 followed by SSP2-4.5 and SSP1-2.6.The snowmelt and groundwater contributions to streamflow have decreased whereas rainfall and glacier melt components have increased on the other hand.The projected streamflows(2020-2070)compared to the control period(1990-2014)showed a reduction of 3%-11%,2%-9%,and 1%-7%by SSP1-2.6,SSP2-4.5,and SSP5-8.5,respectively.The results revealed detailed insights into the performance of three GCMs,which can serve as a blueprint for regional policymaking and be expanded upon to establish adaption measures.
基金the National Mission on Himalayan Studies(NMHS),Ministry of Environment,Forest and Climate Change(MoEFCC)for the financial support under the research project number(GBPNI/NMHS-2019-20/MG)。
文摘Climate change differentially influences the frozen ground,a major dynamic component of the cryosphere,on a local and regional scale.Under the warming climate with pronounced effects reported at higher altitudes,the characterization of the frozen ground is very important in the Upper Indus Basin(UIB),an important and critical region with respect to climate and hydro-glaciological dynamics.In this study,the efficiency and reliability of the surface frost number model are assessed in delineating the spatial extent of different classes of frozen ground in the region.The daily MODIS land surface temperature(LST)with ground surface temperature(GST)and surface geomorphological expressions as ground validation datasets are used jointly in efficiently determining the extent of different classes of frozen ground(continuous and discontinuous permafrost and seasonal frost).The LST and GST resonate with each other in the annual cycle of temperature variation,however,with mean annual LST exhibiting an offset(cold bias)of 5 to 7℃relative to mean GST.This study shows that the highest permafrost extent is observed in areas where the lowest thinning rates of glacier ice are reported and vice versa.The surface frost number model categorizes an area of 38%±3%and 15%±3%in the UIB as permafrost and seasonal frost,respectively.Based on the altitude model,the lower limit of alpine permafrost is approximated at a mean altitude of 4919±590 m a.s.l.in the UIB.The present study acts as preliminary work in the data sparse and inaccessible regions of the UIB in characterizing the frozen and unfrozen ground and may act as a promising input data source in glaciohydro-meteorological models for the Himalaya and Karakoram.In addition,the study also underlines the consideration of this derelict cryospheric climatic variable in defining and accounting for the sustainable development of socio-economic systems through its intricate ramification on agricultural activity,landscape stability and infrastructure.
基金the Banaras Hindu University,Varanasi,Uttar Pradesh(India),for providing a seed grant(Letter No.R/Dev/D/IoE/Equipment/SeedGrantII/2022-23/52078)under the Institute of Eminence(IoE)。
文摘Land surface temperature(LST)is a crucial parameter for understanding the Earth's surface energy balance,which provides insights into climate dynamics and local environmental conditions.Thus,the present study aims to evaluate the spatial and elevation-wise trends in the daytime,nighttime,and mean LST across the Indus River Basin(IRB)using MODIS 8-day product for the period between 2002 and 2022.The elevation,cloud cover,and land cover type data are used for explaining the emerging LST trends.The Theil slope estimator and MannKendall significance test were used for estimating the seasonal and annual LST trends.The findings show warming in mean daytime(0.020-0.024℃/yr)(except winter and post-monsoon),nighttime(0.013-0.049℃/yr),and mean(0.001-0.042℃/yr)LST in all the seasons(highest in monsoon).The annual mean nighttime LST(0.025℃/yr)is rising significantly faster than the mean daytime LST(0.0016℃/yr),showing the presence of a“nighttime warming effect”,which possibly increases human discomfort,particularly during the warm pre-monsoon and humid monsoon season.Elevation-dependent warming(EDW)is predominant in mean daytime LST in two elevation zones,namely(i)0-3 km and(ii)above 4 km,in all seasons,except in post-monsoon.In contrast,EDW in mean nighttime LST is observed up to 3 km and above 6 km in the basin in all the seasons,excluding post-monsoon.The warming trend in LST may be attributed to rising atmospheric moisture,cloud cover,declining snow cover,and changes in land cover to non-vegetated land.However,further investigations will involve exploring the underlying factors contributing to the observed anomalies in nighttime LST,considering variables such as regional energy balance and atmospheric stability.This research contributes to an understanding of the thermal dynamics in the mountain basin,aiding in climate studies,land management,and the development of effective adaptation strategies in the IRB.
文摘The Sohnari Member of the Early Eocene Laki Formation is massively deposited in the Southern Indus Basin of Pakistan and is considered a potential source rock to generate hydrocarbons.However,the detailed paleoclimatic,paleoweathering,and depositional conditions of the Sohnari Member have not been studied earlier.This research mainly discusses the detailed mineralogical(bulk and clay)and elemental geochemistry of the Laki Formation from two outcrop sections(Jhimpir and Lakhra)in the Southern Indus Basin,Pakistan.The bulk minerals,including quartz(low),hematite,calcite,halite,gypsum,and clay minerals such as kaolinite,chlorite,smectite and illite have been discussed here.These results demonstrate the paleo-environment of studied area was arid with enhanced saline and weak to strong oxidizing depositional conditions.The chemical index of alteration(CIA)values in Jhimpir and Lakhra sections are in the ranges of 41.30-97.93 and 22.30-96.19,respectively,indicating that the Sohnari sediments experienced weak to intense chemical weathering in the source area.The interpretation of the A-CN-K ternary diagram is consistent with the clay mineral contents in the studied sediments,which is characterized by the predominance of kaolinite,gibbsite and chlorite,demonstrating the weak to strong weathering state under warm and humid climatic conditions.The chemical indices such as Sr/Ba,δU,V/Cr,Ni/Co,and Cu/Zn,U/Th and Ba/Ga show that Sohnari rocks of Early Eocene Laki Formation underwent strong evaporation,oxic water column with warm to humid and minor contact of cold climatic conditions.Based on our present data,it can be concluded that the sediments of Sohnari Member of Laki Formation from Jhimpir and Lakhra areas of Southern Indus Basin in Pakistan are related to Indio-Eurasian collision and came from the Indian shield rocks that were deposited in a brackish water body with a minor contact of the freshwater oxidizing paleo-environment depositional conditions.
文摘Indus basin hosts many significant mineral deposits like gypsum and cement raw materials, gemstones, iron, coal, marble, dimension and construction stones, petroleum and water resources, world class pink salt and other many minerals in different regions which need further exploitation and development. The construction of new water dams in different regions are vital (for availability of cheap electricity), because of available barren and fertile lands and wastage of water as flood. Further the installation of more cement industries in different regions of Indus Basin especially in middle Indus (Sulaiman Range where gypsum, clays and limestones can be available via belt) can increase export to receive more foreign exchange and make local cement cheap for the sustainable development of Pakistan. 31 stratigraphic sequential sections at different sections of Indus basins are presented to know the variation and local stratigraphy. Further here three new titanosaur taxa are being described. Saraikimasoom is based on snout;Gspsaurus, (Maojandino), Nicksaurus and Khanazeem are based on cranial, vertebral and appendicular elements;Balochisaurus, Marisaurus, Pakisaurus, and 3 new genera and species Imrankhanhero zilefatmi, Qaikshaheen masoomniazi and Ikqaumishan smqureshi based on vertebral and appendicular elements;and Sulaimanisaurus and Khetranisaurus based on only caudal vertebrae. Although Pakistani Titanosaurians seem to be proliferated found from one horizon of Vitakri Formation just below the K-Pg boundary they have a wide range of diagnostic features and key elements among titanosaurs which can be used for comparison and phylogenetic analyses with broad updated character data set of titanosaurs.