期刊文献+
共找到2,935篇文章
< 1 2 147 >
每页显示 20 50 100
An Efficient and Provably Secure SM2 Key-Insulated Signature Scheme for Industrial Internet of Things
1
作者 Senshan Ouyang Xiang Liu +3 位作者 Lei Liu Shangchao Wang Baichuan Shao Yang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期903-915,共13页
With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar... With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle. 展开更多
关键词 KEY-INSULATED SM2 algorithm digital signature industrial internet of things(Iiot) provable security
下载PDF
A Double-Timescale Reinforcement Learning Based Cloud-Edge Collaborative Framework for Decomposable Intelligent Services in Industrial Internet of Things
2
作者 Zhang Qiuyang Wang Ying Wang Xue 《China Communications》 SCIE CSCD 2024年第10期181-199,共19页
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p... With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%. 展开更多
关键词 computing service edge intelligence industrial internet of things(Iiot) reinforcement learning(RL)
下载PDF
Energy Minimization for Heterogenous Traffic Coexistence with Puncturing in Mobile Edge Computing-Based Industrial Internet of Things
3
作者 Wang Xue Wang Ying +1 位作者 Fei Zixuan Zhao Junwei 《China Communications》 SCIE CSCD 2024年第10期167-180,共14页
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform... Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks. 展开更多
关键词 energy minimization enhanced mobile broadband(eMBB)and ultra-reliable low latency communications(URLLC)coexistence industrial internet of things(Iiot) mobile edge computing(MEC) PUNCTURING
下载PDF
Edge Cloud Selection in Mobile Edge Computing(MEC)-Aided Applications for Industrial Internet of Things(IIoT)Services
4
作者 Dae-Young Kim SoYeon Lee +1 位作者 MinSeung Kim Seokhoon Kim 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2049-2060,共12页
In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im... In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method. 展开更多
关键词 industrial internet of things(Iiot)network Iiot service mobile edge computing(MEC) edge cloud selection MEC-aided application
下载PDF
Vector Dominance with Threshold Searchable Encryption (VDTSE) for the Internet of Things
5
作者 Jingjing Nie Zhenhua Chen 《Computers, Materials & Continua》 SCIE EI 2024年第6期4763-4779,共17页
The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which ... The Internet of Medical Things(IoMT)is an application of the Internet of Things(IoT)in the medical field.It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems,which is essential in smart healthcare.However,Personal Health Records(PHRs)are normally kept in public cloud servers controlled by IoMT service providers,so privacy and security incidents may be frequent.Fortunately,Searchable Encryption(SE),which can be used to execute queries on encrypted data,can address the issue above.Nevertheless,most existing SE schemes cannot solve the vector dominance threshold problem.In response to this,we present a SE scheme called Vector Dominance with Threshold Searchable Encryption(VDTSE)in this study.We use a Lagrangian polynomial technique and convert the vector dominance threshold problem into a constraint that the number of two equal-length vectors’corresponding bits excluding wildcards is not less than a threshold t.Then,we solve the problem using the proposed technique modified in Hidden Vector Encryption(HVE).This technique makes the trapdoor size linear to the number of attributes and thus much smaller than that of other similar SE schemes.A rigorous experimental analysis of a specific application for privacy-preserving diabetes demonstrates the feasibility of the proposed VDTSE scheme. 展开更多
关键词 internet of things(iot) internet of Medical things(IoMT) vector dominance with threshold searchable encryption(VDTSE) threshold comparison electronic healthcare
下载PDF
Security and Privacy in Solar Insecticidal Lamps Internet of Things:Requirements and Challenges
6
作者 Qingsong Zhao Lei Shu +3 位作者 Kailiang Li Mohamed Amine Ferrag Ximeng Liu Yanbin Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期58-73,共16页
Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the... Solar insecticidal lamps(SIL) can effectively control pests and reduce the use of pesticides. Combining SIL and Internet of Things(IoT) has formed a new type of agricultural IoT,known as SIL-IoT, which can improve the effectiveness of migratory phototropic pest control. However, since the SIL is connected to the Internet, it is vulnerable to various security issues.These issues can lead to serious consequences, such as tampering with the parameters of SIL, illegally starting and stopping SIL,etc. In this paper, we describe the overall security requirements of SIL-IoT and present an extensive survey of security and privacy solutions for SIL-IoT. We investigate the background and logical architecture of SIL-IoT, discuss SIL-IoT security scenarios, and analyze potential attacks. Starting from the security requirements of SIL-IoT we divide them into six categories, namely privacy, authentication, confidentiality, access control, availability,and integrity. Next, we describe the SIL-IoT privacy and security solutions, as well as the blockchain-based solutions. Based on the current survey, we finally discuss the challenges and future research directions of SIL-IoT. 展开更多
关键词 CHALLENGES internet of things(iot) privacy and security security requirements solar insecticidal lamps(SIL)
下载PDF
A Few-Shot Learning-Based Automatic Modulation Classification Method for Internet of Things
7
作者 Aer Sileng Qi Chenhao 《China Communications》 SCIE CSCD 2024年第8期18-29,共12页
Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve it... Due to the limited computational capability and the diversity of the Internet of Things devices working in different environment,we consider fewshot learning-based automatic modulation classification(AMC)to improve its reliability.A data enhancement module(DEM)is designed by a convolutional layer to supplement frequency-domain information as well as providing nonlinear mapping that is beneficial for AMC.Multimodal network is designed to have multiple residual blocks,where each residual block has multiple convolutional kernels of different sizes for diverse feature extraction.Moreover,a deep supervised loss function is designed to supervise all parts of the network including the hidden layers and the DEM.Since different model may output different results,cooperative classifier is designed to avoid the randomness of single model and improve the reliability.Simulation results show that this few-shot learning-based AMC method can significantly improve the AMC accuracy compared to the existing methods. 展开更多
关键词 automatic modulation classification(AMC) deep learning(DL) few-shot learning internet of things(iot)
下载PDF
Potential Benefits and Obstacles of the Use of Internet of Things in Saudi Universities: Empirical Study
8
作者 Najmah Adel Fallatah Fahad Mahmoud Ghabban +4 位作者 Omair Ameerbakhsh Ibrahim Alfadli Wael Ghazy Alheadary Salem Sulaiman Alatawi Ashwaq Hasen Al-Shehri 《Advances in Internet of Things》 2024年第1期1-20,共20页
Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of thi... Internet of Things (IoT) among of all the technology revolutions has been considered the next evolution of the internet. IoT has become a far more popular area in the computing world. IoT combined a huge number of things (devices) that can be connected through the internet. The purpose: this paper aims to explore the concept of the Internet of Things (IoT) generally and outline the main definitions of IoT. The paper also aims to examine and discuss the obstacles and potential benefits of IoT in Saudi universities. Methodology: the researchers reviewed the previous literature and focused on several databases to use the recent studies and research related to the IoT. Then, the researchers also used quantitative methodology to examine the factors affecting the obstacles and potential benefits of IoT. The data were collected by using a questionnaire distributed online among academic staff and a total of 150 participants completed the survey. Finding: the result of this study reveals there are twelve factors that affect the potential benefits of using IoT such as reducing human errors, increasing business income and worker’s productivity. It also shows the eighteen factors which affect obstacles the IoT use, for example sensors’ cost, data privacy, and data security. These factors have the most influence on using IoT in Saudi universities. 展开更多
关键词 internet of things (iot) M2M Factors Obstacles Potential Benefits UNIVERSITIES
下载PDF
Intelligent Intrusion Detection System for Industrial Internet of Things Environment 被引量:1
9
作者 R.Gopi R.Sheeba +4 位作者 K.Anguraj T.Chelladurai Haya Mesfer Alshahrani Nadhem Nemri Tarek Lamoudan 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1567-1582,共16页
Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request ar... Rapid increase in the large quantity of industrial data,Industry 4.0/5.0 poses several challenging issues such as heterogeneous data generation,data sensing and collection,real-time data processing,and high request arrival rates.The classical intrusion detection system(IDS)is not a practical solution to the Industry 4.0 environment owing to the resource limitations and complexity.To resolve these issues,this paper designs a new Chaotic Cuckoo Search Optimiza-tion Algorithm(CCSOA)with optimal wavelet kernel extreme learning machine(OWKELM)named CCSOA-OWKELM technique for IDS on the Industry 4.0 platform.The CCSOA-OWKELM technique focuses on the design of feature selection with classification approach to achieve minimum computation complex-ity and maximum detection accuracy.The CCSOA-OWKELM technique involves the design of CCSOA based feature selection technique,which incorpo-rates the concepts of chaotic maps with CSOA.Besides,the OWKELM technique is applied for the intrusion detection and classification process.In addition,the OWKELM technique is derived by the hyperparameter tuning of the WKELM technique by the use of sunflower optimization(SFO)algorithm.The utilization of CCSOA for feature subset selection and SFO algorithm based hyperparameter tuning leads to better performance.In order to guarantee the supreme performance of the CCSOA-OWKELM technique,a wide range of experiments take place on two benchmark datasets and the experimental outcomes demonstrate the promis-ing performance of the CCSOA-OWKELM technique over the recent state of art techniques. 展开更多
关键词 Intrusion detection system artificial intelligence machine learning industry 4.0 internet of things
下载PDF
Anomaly Detection for Industrial Internet of Things Cyberattacks
10
作者 Rehab Alanazi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2361-2378,共18页
The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diver... The evolution of the Internet of Things(IoT)has empowered modern industries with the capability to implement large-scale IoT ecosystems,such as the Industrial Internet of Things(IIoT).The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational andfinancial harm to organizations.To preserve the confidentiality,integrity,and availability of IIoT networks,an anomaly-based intrusion detection system(IDS)can be used to provide secure,reliable,and efficient IIoT ecosystems.In this paper,we propose an anomaly-based IDS for IIoT networks as an effective security solution to efficiently and effectively overcome several IIoT cyberattacks.The proposed anomaly-based IDS is divided into three phases:pre-processing,feature selection,and classification.In the pre-processing phase,data cleaning and nor-malization are performed.In the feature selection phase,the candidates’feature vectors are computed using two feature reduction techniques,minimum redun-dancy maximum relevance and neighborhood components analysis.For thefinal step,the modeling phase,the following classifiers are used to perform the classi-fication:support vector machine,decision tree,k-nearest neighbors,and linear discriminant analysis.The proposed work uses a new data-driven IIoT data set called X-IIoTID.The experimental evaluation demonstrates our proposed model achieved a high accuracy rate of 99.58%,a sensitivity rate of 99.59%,a specificity rate of 99.58%,and a low false positive rate of 0.4%. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial internet of things(Iiot) iot industrial control systems(ICSs) X-IiotID
下载PDF
Intelligent Intrusion Detection for Industrial Internet of Things Using Clustering Techniques
11
作者 Noura Alenezi Ahamed Aljuhani 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2899-2915,共17页
The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical ... The rapid growth of the Internet of Things(IoT)in the industrial sector has given rise to a new term:the Industrial Internet of Things(IIoT).The IIoT is a collection of devices,apps,and services that connect physical and virtual worlds to create smart,cost-effective,and scalable systems.Although the IIoT has been implemented and incorporated into a wide range of industrial control systems,maintaining its security and privacy remains a significant concern.In the IIoT contexts,an intrusion detection system(IDS)can be an effective security solution for ensuring data confidentiality,integrity,and availability.In this paper,we propose an intelligent intrusion detection technique that uses principal components analysis(PCA)as a feature engineering method to choose the most significant features,minimize data dimensionality,and enhance detection performance.In the classification phase,we use clustering algorithms such as K-medoids and K-means to determine whether a given flow of IIoT traffic is normal or attack for binary classification and identify the group of cyberattacks according to its specific type for multi-class classification.To validate the effectiveness and robustness of our proposed model,we validate the detection method on a new driven IIoT dataset called X-IIoTID.The performance results showed our proposed detection model obtained a higher accuracy rate of 99.79%and reduced error rate of 0.21%when compared to existing techniques. 展开更多
关键词 Anomaly detection anomaly-based IDS industrial internet of things(Iiot) internet of things
下载PDF
AID4I:An Intrusion Detection Framework for Industrial Internet of Things Using Automated Machine Learning
12
作者 Anil Sezgin Aytug Boyacı 《Computers, Materials & Continua》 SCIE EI 2023年第8期2121-2143,共23页
By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The be... By identifying and responding to any malicious behavior that could endanger the system,the Intrusion Detection System(IDS)is crucial for preserving the security of the Industrial Internet of Things(IIoT)network.The benefit of anomaly-based IDS is that they are able to recognize zeroday attacks due to the fact that they do not rely on a signature database to identify abnormal activity.In order to improve control over datasets and the process,this study proposes using an automated machine learning(AutoML)technique to automate the machine learning processes for IDS.Our groundbreaking architecture,known as AID4I,makes use of automatic machine learning methods for intrusion detection.Through automation of preprocessing,feature selection,model selection,and hyperparameter tuning,the objective is to identify an appropriate machine learning model for intrusion detection.Experimental studies demonstrate that the AID4I framework successfully proposes a suitablemodel.The integrity,security,and confidentiality of data transmitted across the IIoT network can be ensured by automating machine learning processes in the IDS to enhance its capacity to identify and stop threatening activities.With a comprehensive solution that takes advantage of the latest advances in automated machine learning methods to improve network security,AID4I is a powerful and effective instrument for intrusion detection.In preprocessing module,three distinct imputation methods are utilized to handle missing data,ensuring the robustness of the intrusion detection system in the presence of incomplete information.Feature selection module adopts a hybrid approach that combines Shapley values and genetic algorithm.The Parameter Optimization module encompasses a diverse set of 14 classification methods,allowing for thorough exploration and optimization of the parameters associated with each algorithm.By carefully tuning these parameters,the framework enhances its adaptability and accuracy in identifying potential intrusions.Experimental results demonstrate that the AID4I framework can achieve high levels of accuracy in detecting network intrusions up to 14.39%on public datasets,outperforming traditional intrusion detection methods while concurrently reducing the elapsed time for training and testing. 展开更多
关键词 Automated machine learning intrusion detection system industrial internet of things parameter optimization
下载PDF
Robust graph‐based localization for industrial Internet of things in the presence of flipping ambiguities
13
作者 Mian Imtiaz ul Haq Ruhul Amin Khalil +3 位作者 Muhannad Almutiry Ahmad Sawalmeh Tanveer Ahmad Nasir Saeed 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1140-1149,共10页
Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks... Localisation of machines in harsh Industrial Internet of Things(IIoT)environment is necessary for various applications.Therefore,a novel localisation algorithm is proposed for noisy range measurements in IIoT networks.The position of an unknown machine device in the network is estimated using the relative distances between blind machines(BMs)and anchor machines(AMs).Moreover,a more practical and challenging scenario with the erroneous position of AM is considered,which brings additional uncertainty to the final position estimation.Therefore,the AMs selection algorithm for the localisation of BMs in the IIoT network is introduced.Only those AMs will participate in the localisation process,which increases the accuracy of the final location estimate.Then,the closed‐form expression of the proposed greedy successive anchorization process is derived,which prevents possible local convergence,reduces computation,and achieves Cramér‐Rao lower bound accuracy for white Gaussian measurement noise.The results are compared with the state‐of‐the‐art and verified through numerous simulations. 展开更多
关键词 Cramér‐Rao lower bound greedy successive anchorization industrial internet of things LOCALIZATION
下载PDF
Enabling Industrial Internet of Things(IIoT) towards an emerging smart energy system 被引量:9
14
作者 Ding Zhang Ching Chuen Chan George You Zhou 《Global Energy Interconnection》 2018年第1期39-47,共9页
The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balanci... The increasing penetration of renewable energy on the transmission and distribution power network is driving the adoption of two-way power flow control, data and communications needed to meet the dependency of balancing generation and load. Thus, creating an environment where power and information flow seamlessly in real time to enable reliable and economically viable energy delivery, the advent of Internet of Energy(IoE) as well as the rising of Internet of Things(IoT) based smart systems.The evolution of IT to Io T has shown that an information network can be connected in an autonomous way via routers from operating system(OS) based computers and devices to build a highly intelligent eco-system. Conceptually, we are applying the same methodology to the Io E concept so that Energy Operating System(EOS) based assets and devices can be developed into a distributed energy network via energy gateway and self-organized into a smart energy eco-system.This paper introduces a laboratory based IIo T driven software and controls platform developed on the NICE Nano-grid as part of a NICE smart system Initiative for Shenhua group. The goal of this effort is to develop an open architecture based Industrial Smart Energy Consortium(ISEC) to attract industrial partners, academic universities, module supplies, equipment vendors and related stakeholder to explore and contribute into a test-bed centric open laboratory template and platform for next generation energy-oriented smart industry applications.In the meanwhile, ISEC will play an important role to drive interoperability standards for the mining industry so that the era of un-manned underground mining operation can become the reality as well as increasing safety regulation enforcement. 展开更多
关键词 internet of energy industrial iot FRACTAL
下载PDF
A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT
15
作者 Yifan Liu Shancang Li +1 位作者 Xinheng Wang Li Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1233-1261,共29页
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated... The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats. 展开更多
关键词 Cyber security industrial internet of things artificial intelligence machine learning algorithms hybrid cyber threats
下载PDF
Internet of robotic things for mobile robots:Concepts,technologies,challenges,applications,and future directions 被引量:1
16
作者 Homayun Kabir Mau-Luen Tham Yoong Choon Chang 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1265-1290,共26页
Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sen... Nowadays,Multi Robotic System(MRS)consisting of different robot shapes,sizes and capabilities has received significant attention from researchers and are being deployed in a variety of real-world applications.From sensors and actuators improved by communication technologies to powerful computing systems utilizing advanced Artificial Intelligence(AI)algorithms have rapidly driven the development of MRS,so the Internet of Things(IoT)in MRS has become a new topic,namely the Internet of Robotic Things(IoRT).This paper summarizes a comprehensive survey of state-of-the-art technologies for mobile robots,including general architecture,benefits,challenges,practical applications,and future research directions.In addition,remarkable research of i)multirobot navigation,ii)network architecture,routing protocols and communications,and iii)coordination among robots as well as data analysis via external computing(cloud,fog,edge,edge-cloud)are merged with the IoRT architecture according to their applicability.Moreover,security is a long-term challenge for IoRT because of various attack vectors,security flaws,and vulnerabilities.Security threats,attacks,and existing solutions based on IoRT architectures are also under scrutiny.Moreover,the identification of environmental situations that are crucial for all types of IoRT applications,such as the detection of objects,human,and obstacles,is also critically reviewed.Finally,future research directions are given by analyzing the challenges of IoRT in mobile robots. 展开更多
关键词 Multi Robotic System(MRS) internet of things(iot) internet of Robotic things(IoRT) Cloud computing Artificial intelligence(AI) Machine learning(ML) Reinforcement learning(RL)
下载PDF
Machine Learning Empowered Security and Privacy Architecture for IoT Networks with the Integration of Blockchain
17
作者 Sohaib Latif M.Saad Bin Ilyas +3 位作者 Azhar Imran Hamad Ali Abosaq Abdulaziz Alzubaidi Vincent Karovic Jr. 《Intelligent Automation & Soft Computing》 2024年第2期353-379,共27页
The Internet of Things(IoT)is growing rapidly and impacting almost every aspect of our lives,fromwearables and healthcare to security,traffic management,and fleet management systems.This has generated massive volumes ... The Internet of Things(IoT)is growing rapidly and impacting almost every aspect of our lives,fromwearables and healthcare to security,traffic management,and fleet management systems.This has generated massive volumes of data and security,and data privacy risks are increasing with the advancement of technology and network connections.Traditional access control solutions are inadequate for establishing access control in IoT systems to provide data protection owing to their vulnerability to single-point OF failure.Additionally,conventional privacy preservation methods have high latency costs and overhead for resource-constrained devices.Previous machine learning approaches were also unable to detect denial-of-service(DoS)attacks.This study introduced a novel decentralized and secure framework for blockchain integration.To avoid single-point OF failure,an accredited access control scheme is incorporated,combining blockchain with local peers to record each transaction and verify the signature to access.Blockchain-based attribute-based cryptography is implemented to protect data storage privacy by generating threshold parameters,managing keys,and revoking users on the blockchain.An innovative contract-based DOS attack mitigation method is also incorporated to effectively validate devices with intelligent contracts as trusted or untrusted,preventing the server from becoming overwhelmed.The proposed framework effectively controls access,safeguards data privacy,and reduces the risk of cyberattacks.The results depict that the suggested framework outperforms the results in terms of accuracy,precision,sensitivity,recall,and F-measure at 96.9%,98.43%,98.8%,98.43%,and 98.4%,respectively. 展开更多
关键词 Machine learning internet of things blockchain data privacy SECURITY Industry 4.0
下载PDF
Task Offloading Optimization for AGVs with Fixed Routes in Industrial IoT Environment
18
作者 Peng Liu Zifu Wu +3 位作者 Hangguan Shan Fei Lin Qi Wang Qingshan Wang 《China Communications》 SCIE CSCD 2023年第5期302-314,共13页
In order to solve the delay requirements of computing intensive tasks in industrial Internet of things,edge computing is moving from theoretical research to practical applications.Edge servers(ESs)have been deployed i... In order to solve the delay requirements of computing intensive tasks in industrial Internet of things,edge computing is moving from theoretical research to practical applications.Edge servers(ESs)have been deployed in factories,and on-site auto guided vehicles(AGVs),besides doing their regular transportation tasks,can partly act as mobile collectors and distributors of computing data and tasks.Since AGVs may offload tasks to the same ES if they have overlapping path segments,resource allocation conflicts are inevitable.In this paper,we study the problem of efficient task offloading from AGVs to ESs,along their fixed trajectories.We propose a multi-AGV task offloading optimization algorithm(MATO),which first uses the weighted polling algorithm to preliminarily allocate tasks for individual AGVs based on load balancing,and then uses the Deep Q-Network(DQN)model to obtain the updated offloading strategy for the AGV group.The simulation results show that,compared with the existing methods,the proposed MATO algorithm can significantly reduce the maximum completion time of tasks and be stable under various parameter settings. 展开更多
关键词 industrial internet of things task offloading optimization auto guided vehicles reinforcement learning
下载PDF
Internet of things:Conceptual network structure,main challenges and future directions
19
作者 Leonardo B.Furstenau Yan Pablo Reckziegel Rodrigues +6 位作者 Michele Kremer Sott Pedro Leivas Michael S.Dohan José Ricardo López-Robles Manuel J.Cobo Nicola Luigi Bragazzi Kim-Kwang Raymond Choo 《Digital Communications and Networks》 SCIE CSCD 2023年第3期677-687,共11页
Internet of Things(IoT)is a key technology trend that supports our digitalized society in applications such as smart countries and smart cities.In this study,we investigate the existing strategic themes,thematic evolu... Internet of Things(IoT)is a key technology trend that supports our digitalized society in applications such as smart countries and smart cities.In this study,we investigate the existing strategic themes,thematic evolution structure,key challenges,and potential research opportunities associated with the IoT.For this study,we conduct a Bibliometric Performance and Network Analysis(BPNA),supplemented by an exhaustive Systematic Literature Review(SLR).Specifically,in BPNA,the software SciMAT is used to analyze 14,385 documents and 30,381 keywords in the Web of Science(WoS)database,which was released between 2002 and 2019.The results reveal that 31 clusters are classified according to their importance and development,and the conceptual structures of key clusters are presented,along with their performance analysis and the relationship with other subthemes.The thematic evolution structure describes the important cluster(s)over time.For the SLR,23 documents are analyzed.The SLR reveals key challenges and limitations associated with the IoT.We expect the results will form the basis of future research and guide decision-making in the IoT and other supporting industries. 展开更多
关键词 internet of things Strategic intelligence Industry 4.0 SciMAT Bibliometric analysis Science mapping
下载PDF
How AI-enabled SDN technologies improve the security and functionality of industrial IoT network:Architectures,enabling technologies,and opportunities
20
作者 Jinfang Jiang Chuan Lin +3 位作者 Guangjie Han Adnan MAbu-Mahfouz Syed Bilal Hussain Shah Miguel Martínez-García 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1351-1362,共12页
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi... The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks. 展开更多
关键词 industrial internet of things(Iiot) Industry 4.0 Artificial intelligence(AI) Machine intelligence Software-defined networking(SDN)
下载PDF
上一页 1 2 147 下一页 到第
使用帮助 返回顶部