Aero-engine hollow turbine blades are work under prolonged high temperature,requiring high dimensional accuracy.Blade profile and wall thickness are important parameters to ensure the comprehensive performance of blad...Aero-engine hollow turbine blades are work under prolonged high temperature,requiring high dimensional accuracy.Blade profile and wall thickness are important parameters to ensure the comprehensive performance of blades,which need to be measured accurately during manufacturing process.In this study,a high accuracy industrial computed tomography(ICT)measuring method was developed based on standard cylindrical pin and ring workpieces of different sizes.Combining ICT with cubic spline interpolation,a sub-pixel accuracy was achieved in measuring the dimension of component.Compared with the traditional and whole-pixel level image measurement method,the cubic spline interpolation algorithm has the advantages of high accuracy in image edge detection and thus high accuracy of dimensional measurement.Further,the technique was employed to measure the profile and wall thickness of a typical aerospace engine turbine blade,and an accuracy higher than 0.015 mm was obtained.展开更多
The wide application of new information and communication technologies(ICTs)has been argued to be critical in local economic development,while the application of new ICTs will affect the development of industrial clus...The wide application of new information and communication technologies(ICTs)has been argued to be critical in local economic development,while the application of new ICTs will affect the development of industrial cluster,especially those small and medium-sized enterprises(SMEs).This paper examines Yangxunqiao textile cluster located in Zhejiang Province as a case study to focus on the role of ICTs in the sustainable development.We argue ICTs application in firms boost flexible and customized production approach,improve e-commerce market channel and raise supply chain management.We also pay special attention to the spatial implication of ICTs adoption in industrial cluster,and suggest that application of ICTs tend to lead to further clustering of SMEs in the location with mature production chain.Our analysis shows that new ICTs are a facilitator in the sustainable development of the industrial cluster.展开更多
The recent increasing use of γ-rays industrial computed tomography(γ-rays ICT) in various fields has induced greater attention to its performance as well as to considerations of radiation safety. It is understood th...The recent increasing use of γ-rays industrial computed tomography(γ-rays ICT) in various fields has induced greater attention to its performance as well as to considerations of radiation safety. It is understood that radiation protection planning cannot be sacrificed for the sake of CT image quality during the design, manufacture,and layout of γ-rays ICT systems. In the present work, we describe a typical γ-rays ICT system in brief, and, based on experience and pertinent examples, we propose design requirements for ensuring the radiation safety of the sealed radioactive source, source container, and workspace. The design examples and dose rate measurement results illustrate that the proposed design standards are reasonable,feasible, and safe, and are therefore meaningful for the design, manufacture, and layout of γ-rays ICT systems. This paper discussed the predominant measures associated with the radiation protection of γ-rays ICT systems in accordance with the pertinent Chinese standards. In addition, based on experience and pertinent examples, the design requirements for ensuring the radiation safety of a sealed radioactive source, source container, and workspace were defined in detail. The design examples and dose rate measurements conducted in conjunction with a γ-rays ICT system and workspace employing the proposed design standards have illustrated that the proposals provided in this paper are reasonable, feasible, and safe, and are therefore meaningful for the design, manufacture, and layout of γ-rays ICT systems.展开更多
The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial proce...The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial processes such as pipe flows or for improving design, operation, optimization and troubleshooting. Nowadays, gamma CT permits to visualize failure equipment points in three-dimensional analysis and in sections of chemical and petrochemical industries. The aim of this work is the development of the mechanical system on a third-generation industrial CT scanner to analyze laboratorial process columns which perform highly efficient separation, turning the ^6oCo, ^75Se, ^137Cs and/or ^192Ir sealed gamma-ray source(s) and the NaI(Tl) multidetector array. It also has a translation movement along the column axis to obtain as many slices of the process flow as needed. The mechanical assembly for this third-generation industrial CT scanner is comprised by strength and rigidity structural frame in stainless and carbon steels, rotating table, source shield and collimator with pneumatic exposure system, spur gear system, translator, rotary stage, drives and stepper motors. The use of suitable spur gears has given a good repeatability and high accuracy in the degree of veracity. The data acquisition boards, mechanical control interfaces, software for movement control and image reconstruction were specially development. A multiphase phantom capable to be setting with solid, liquid and gas was testing. The scanner was setting for 90 views and 19 projections for each detector totalizing 11,970 projections. Experiments to determine the linear attenuation coefficients of the phantom were carried out which applied the Lambert-Beer principle. Results showed that it was possible to distinguish between the phases even the polymethylmethacrylate and the water have very similar density and linear attenuation coefficients. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the used phantom in this study. The tomografic reconstruction algorithm in used 60 ~ 60 pixels images was the Alternative Minimization (AM) technique and was implemented in MATLAB and VB platforms. The mechanical system presented a good performance in terms of strength, rigidity, accuracy and repeatability with great potential to be used for education or program which dedicated to training chemical and petrochemical industry professionals and for industrial process optimization in Brazil.展开更多
For industrial computed tomography systems, generation II scan mode has a large field of view but time consuming and generation III has a small field of view but fast. In order to realize the rapid ICT test of large ...For industrial computed tomography systems, generation II scan mode has a large field of view but time consuming and generation III has a small field of view but fast. In order to realize the rapid ICT test of large objects, a scan mode based on generation III called large field of view scan was discussed and its reconstruction algorithm based on FBP was deduced. The validity of the algorithm was verified by the results of computer simulation and experiments. Analysis showed that the effective scan field of view could be improved by more than 90% compared with that of generation III.展开更多
In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice ima...In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.展开更多
Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionall...Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.展开更多
In order to analyze the technical structure and international comparative advantage of the information and communication technology(ICT)manufacturing industry,a complete set of ICT manufacturing product categories has...In order to analyze the technical structure and international comparative advantage of the information and communication technology(ICT)manufacturing industry,a complete set of ICT manufacturing product categories has been constructed by matching National Economical Industry Classification(GB/T4754-2017)with Harmonized System(HS)Codes,based on the relevant definitions in International Standard Industrial Classification(ISIC).The proposed definition overcomes inherent defects such as inaccurate scopes,lagging data and rough categories,which are characterized by commonly utilized product-level based classification approaches.Within the given framework,this paper has designed the technology content related indicators from the perspective of production distribution,and divided ICT product categories into high-end,medium-end and lowend manufacturing classifications according to respective global shares.Then,we have calculated international market shares(IMS),revealed comparative advantages(RCA),and market penetration rates(MPR)of ICT manufacturing exports for major economies from 2010 to 2021.Finally,development characterizations of ICT manufacturing industries for China’s Mainland are analyzed,and several practical suggestions are provided.展开更多
Uniformity of warhead axial charge and influences of different warhead wall thicknesses on measurement results were studied by industrial computed tomography(C T).By comparing the differences of relative density value...Uniformity of warhead axial charge and influences of different warhead wall thicknesses on measurement results were studied by industrial computed tomography(C T).By comparing the differences of relative density values of the same simulation charge sample assembled in simulation bodies with different wall thicknesses,effects of warhead wall thickness on charge CT relative density values were analyzed.The results show that CT value increases by about1%with the increase of each additional1mm of wall thickness under the same simulation charge for the projectile with outer diameter of100mm and internal diameterof90mm.There fore,to detect uniformity along warhead axial(upper,middle and lower sections)charge density within penetration ability range of industrial CT(IC T),the CT values of various parts(upper,middle and lower sections)may be only measured without measuring absolute density of charge.By subtracting changes in the CT values caused by warhead wall thickness variation,the CT values of various parts under the same charge can describe warhead axial charge uniformity.展开更多
基金financially supported by the National Science and Technology Major Project "Aero Engine and Gas Turbine"(No.2017-Ⅶ-0008-0102)National Nature Science Foundation of China (No.51701112 and No.51690162)+1 种基金Shanghai Rising-Star Program (No.20QA1403800 and No.21QC1401500)Shanghai Science and Technology Committee (No.21511103600)
文摘Aero-engine hollow turbine blades are work under prolonged high temperature,requiring high dimensional accuracy.Blade profile and wall thickness are important parameters to ensure the comprehensive performance of blades,which need to be measured accurately during manufacturing process.In this study,a high accuracy industrial computed tomography(ICT)measuring method was developed based on standard cylindrical pin and ring workpieces of different sizes.Combining ICT with cubic spline interpolation,a sub-pixel accuracy was achieved in measuring the dimension of component.Compared with the traditional and whole-pixel level image measurement method,the cubic spline interpolation algorithm has the advantages of high accuracy in image edge detection and thus high accuracy of dimensional measurement.Further,the technique was employed to measure the profile and wall thickness of a typical aerospace engine turbine blade,and an accuracy higher than 0.015 mm was obtained.
基金supported by the National Natural Science Foundation of China(Grant No.40571047)Beijing Municipal Science&Technology Commission(Grant No.ZZ0860)
文摘The wide application of new information and communication technologies(ICTs)has been argued to be critical in local economic development,while the application of new ICTs will affect the development of industrial cluster,especially those small and medium-sized enterprises(SMEs).This paper examines Yangxunqiao textile cluster located in Zhejiang Province as a case study to focus on the role of ICTs in the sustainable development.We argue ICTs application in firms boost flexible and customized production approach,improve e-commerce market channel and raise supply chain management.We also pay special attention to the spatial implication of ICTs adoption in industrial cluster,and suggest that application of ICTs tend to lead to further clustering of SMEs in the location with mature production chain.Our analysis shows that new ICTs are a facilitator in the sustainable development of the industrial cluster.
文摘The recent increasing use of γ-rays industrial computed tomography(γ-rays ICT) in various fields has induced greater attention to its performance as well as to considerations of radiation safety. It is understood that radiation protection planning cannot be sacrificed for the sake of CT image quality during the design, manufacture,and layout of γ-rays ICT systems. In the present work, we describe a typical γ-rays ICT system in brief, and, based on experience and pertinent examples, we propose design requirements for ensuring the radiation safety of the sealed radioactive source, source container, and workspace. The design examples and dose rate measurement results illustrate that the proposed design standards are reasonable,feasible, and safe, and are therefore meaningful for the design, manufacture, and layout of γ-rays ICT systems. This paper discussed the predominant measures associated with the radiation protection of γ-rays ICT systems in accordance with the pertinent Chinese standards. In addition, based on experience and pertinent examples, the design requirements for ensuring the radiation safety of a sealed radioactive source, source container, and workspace were defined in detail. The design examples and dose rate measurements conducted in conjunction with a γ-rays ICT system and workspace employing the proposed design standards have illustrated that the proposals provided in this paper are reasonable, feasible, and safe, and are therefore meaningful for the design, manufacture, and layout of γ-rays ICT systems.
文摘The development of measurement geometry for medical X-ray computed tomography (CT) scanners was carried out from the first to the fourth-generation. This concept has also been applied for imaging of industrial processes such as pipe flows or for improving design, operation, optimization and troubleshooting. Nowadays, gamma CT permits to visualize failure equipment points in three-dimensional analysis and in sections of chemical and petrochemical industries. The aim of this work is the development of the mechanical system on a third-generation industrial CT scanner to analyze laboratorial process columns which perform highly efficient separation, turning the ^6oCo, ^75Se, ^137Cs and/or ^192Ir sealed gamma-ray source(s) and the NaI(Tl) multidetector array. It also has a translation movement along the column axis to obtain as many slices of the process flow as needed. The mechanical assembly for this third-generation industrial CT scanner is comprised by strength and rigidity structural frame in stainless and carbon steels, rotating table, source shield and collimator with pneumatic exposure system, spur gear system, translator, rotary stage, drives and stepper motors. The use of suitable spur gears has given a good repeatability and high accuracy in the degree of veracity. The data acquisition boards, mechanical control interfaces, software for movement control and image reconstruction were specially development. A multiphase phantom capable to be setting with solid, liquid and gas was testing. The scanner was setting for 90 views and 19 projections for each detector totalizing 11,970 projections. Experiments to determine the linear attenuation coefficients of the phantom were carried out which applied the Lambert-Beer principle. Results showed that it was possible to distinguish between the phases even the polymethylmethacrylate and the water have very similar density and linear attenuation coefficients. It was established that the newly developed third-generation fan-beam arrangement gamma scanner unit has a good spatial resolution acceptable given the size of the used phantom in this study. The tomografic reconstruction algorithm in used 60 ~ 60 pixels images was the Alternative Minimization (AM) technique and was implemented in MATLAB and VB platforms. The mechanical system presented a good performance in terms of strength, rigidity, accuracy and repeatability with great potential to be used for education or program which dedicated to training chemical and petrochemical industry professionals and for industrial process optimization in Brazil.
文摘For industrial computed tomography systems, generation II scan mode has a large field of view but time consuming and generation III has a small field of view but fast. In order to realize the rapid ICT test of large objects, a scan mode based on generation III called large field of view scan was discussed and its reconstruction algorithm based on FBP was deduced. The validity of the algorithm was verified by the results of computer simulation and experiments. Analysis showed that the effective scan field of view could be improved by more than 90% compared with that of generation III.
基金Science and Technology Plan Project of Lanzhou City(No.2014-2-7)
文摘In order to solve the problem of internal defect detection in industry, an intelligent detection method for workpiece defect based on industrial computed tomography (CT) images is proposed. The industrial CT slice image is preprocessed first with the combination of adaptive median filtering and adaptive weighted average filtering by analyzing the characteristics of the industrial CT slice images. Then an image segmentation algorithm based on gray change rate is used to segment low contrast information in industrial CT images, and the feature of workpiece defect is extracted by using Hu invariant moment. On this basis, the radial basis function (RBF) neural network model is established and the firefly algorithm is used for optimization, and the intelligent identification of the internal defects of the workpiece is completed. Simulation results show that this method can effectively improve the accuracy of defect identification and provide a theoretical basis for the detection of internal defects in industry.
文摘Conventional electron and optical microscopy techniques require the sample to be sectioned, polished or etched to expose the internal surfaces for imaging. However, such sample preparation techniques have traditionally prevented the observation of the same sample over time, under realistic three-dimensional geometries and in an environment representative of real-world operating conditions. X-ray microscopy (XRM) is a rapidly emerging technique that enables non-destructive evaluation of buried structures within hard to soft materials in 3D, requiring little to no sample preparation. Furthermore in situ and 4D quantification of microstructural evolution under controlled environment as a function of time, temperature, chemistry or stress can be done repeatable on the same sample, using practical specimen sizes ranging from tens of microns to several cm diameter, with achievable imaging resolution from submicron to 50 nm. Many of these studies were reported using XRM in synchrotron beamlines. These include crack propagation on composite and construction materials; corrosion studies; microstructural changes during the setting of cement; flow studies within porous media to mention but a few.
文摘In order to analyze the technical structure and international comparative advantage of the information and communication technology(ICT)manufacturing industry,a complete set of ICT manufacturing product categories has been constructed by matching National Economical Industry Classification(GB/T4754-2017)with Harmonized System(HS)Codes,based on the relevant definitions in International Standard Industrial Classification(ISIC).The proposed definition overcomes inherent defects such as inaccurate scopes,lagging data and rough categories,which are characterized by commonly utilized product-level based classification approaches.Within the given framework,this paper has designed the technology content related indicators from the perspective of production distribution,and divided ICT product categories into high-end,medium-end and lowend manufacturing classifications according to respective global shares.Then,we have calculated international market shares(IMS),revealed comparative advantages(RCA),and market penetration rates(MPR)of ICT manufacturing exports for major economies from 2010 to 2021.Finally,development characterizations of ICT manufacturing industries for China’s Mainland are analyzed,and several practical suggestions are provided.
文摘Uniformity of warhead axial charge and influences of different warhead wall thicknesses on measurement results were studied by industrial computed tomography(C T).By comparing the differences of relative density values of the same simulation charge sample assembled in simulation bodies with different wall thicknesses,effects of warhead wall thickness on charge CT relative density values were analyzed.The results show that CT value increases by about1%with the increase of each additional1mm of wall thickness under the same simulation charge for the projectile with outer diameter of100mm and internal diameterof90mm.There fore,to detect uniformity along warhead axial(upper,middle and lower sections)charge density within penetration ability range of industrial CT(IC T),the CT values of various parts(upper,middle and lower sections)may be only measured without measuring absolute density of charge.By subtracting changes in the CT values caused by warhead wall thickness variation,the CT values of various parts under the same charge can describe warhead axial charge uniformity.