In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to im...In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.展开更多
Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific manage...Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific management methods. This paper proposes an industrial internet platform for massive pig farming, namely, IIP4MPF, which aims to leverage intelligent pig breeding, production rate and labor productivity with the use of artificial intelligence, the Internet of Things, and big data intelligence. We conducted requirement analysis for IIP4MPF using software engineering methods, designed the IIP4MPF system for an integrated solution to digital, interconnected, intelligent pig farming. The practice demonstrates that the IIP4MPF platform significantly improves pig farming industry in pig breeding and productivity.展开更多
Industry 4.0 has become a reality by fusing the Industrial Internet of Things(IIoT)and Artificial Intelligence(AI),providing huge opportunities in the way manufacturing companies operate.However,the adoption of this p...Industry 4.0 has become a reality by fusing the Industrial Internet of Things(IIoT)and Artificial Intelligence(AI),providing huge opportunities in the way manufacturing companies operate.However,the adoption of this paradigm shift,particularly in the field of smart factories and production,is still in its infancy,suffering from various issues,such as the lack of high-quality data,data with high-class imbalance,or poor diversity leading to inaccurate AI models.However,data is severely fragmented across different silos owned by several parties for a range of reasons,such as compliance and legal concerns,preventing discovery and insight-driven IIoT innovation.Notably,valuable and even vital information often remains unutilized as the rise and adoption of AI and IoT in parallel with the concerns and challenges associated with privacy and security.This adversely influences interand intra-organization collaborative use of IIoT data.To tackle these challenges,this article leverages emerging multi-party technologies,privacy-enhancing techniques(e.g.,Federated Learning),and AI approaches to present a holistic,decentralized architecture to form a foundation and cradle for a cross-company collaboration platform and a federated data space to tackle the creeping fragmented data landscape.Moreover,to evaluate the efficiency of the proposed reference model,a collaborative predictive diagnostics and maintenance case study is mapped to an edge-enabled IIoT architecture.Experimental results show the potential advantages of using the proposed approach for multi-party applications accelerating sovereign data sharing through Findable,Accessible,Interoperable,and Reusable(FAIR)principles.展开更多
The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devi...The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.展开更多
The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0...The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0,intelligent transformation is taking place in the industrial field.As a new concept,an industrial IoT system has also attracted the attention of industry and academia.In an actual industrial scenario,a large number of devices will generate numerous industrial datasets.The computing efficiency of an industrial IoT system is greatly improved with the help of using either cloud computing or edge computing.However,privacy issues may seriously harmed interests of users.In this article,we summarize privacy issues in a cloud-or an edge-based industrial IoT system.The privacy analysis includes data privacy,location privacy,query and identity privacy.In addition,we also review privacy solutions when applying software defined network and blockchain under the above two systems.Next,we analyze the computational complexity and privacy protection performance of these solutions.Finally,we discuss open issues to facilitate further studies.展开更多
1 Introduction 1.1 Definition and stakeholders of the Industrial Internet The Industrial Internet is a novel network technology system that applies the Internet of Things(IoT)to the manufacturing and industrial sector...1 Introduction 1.1 Definition and stakeholders of the Industrial Internet The Industrial Internet is a novel network technology system that applies the Internet of Things(IoT)to the manufacturing and industrial sectors.It facilitates the connection of various sensors,devices,systems,factories,and enterprises,enabling the sharing and exchange of data to improve production efficiency,reduce costs,enhance product quality,and enable smart manufacturing.The Industrial Internet serves as a crucial cornerstone and essential support for the Fourth Industrial Revolution,offering specific approaches for industrial digital transformation.Through the comprehensive interconnection of people,machines,and things,the Industrial Internet analyzes various data from intelligent feedback,fostering the development of a new manufacturing and service system.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No.2021R1C1C1013133)supported by the Institute of Information and Communications Technology Planning and Evaluation (IITP)grant funded by the Korea Government (MSIT) (RS-2022-00167197,Development of Intelligent 5G/6G Infrastructure Technology for The Smart City)supported by the Soonchunhyang University Research Fund.
文摘In many IIoT architectures,various devices connect to the edge cloud via gateway systems.For data processing,numerous data are delivered to the edge cloud.Delivering data to an appropriate edge cloud is critical to improve IIoT service efficiency.There are two types of costs for this kind of IoT network:a communication cost and a computing cost.For service efficiency,the communication cost of data transmission should be minimized,and the computing cost in the edge cloud should be also minimized.Therefore,in this paper,the communication cost for data transmission is defined as the delay factor,and the computing cost in the edge cloud is defined as the waiting time of the computing intensity.The proposed method selects an edge cloud that minimizes the total cost of the communication and computing costs.That is,a device chooses a routing path to the selected edge cloud based on the costs.The proposed method controls the data flows in a mesh-structured network and appropriately distributes the data processing load.The performance of the proposed method is validated through extensive computer simulation.When the transition probability from good to bad is 0.3 and the transition probability from bad to good is 0.7 in wireless and edge cloud states,the proposed method reduced both the average delay and the service pause counts to about 25%of the existing method.
文摘Pig farming is becoming a key industry of China’s rural economy in recent years. The current pig farming is still relatively manual, lack of latest Information and Communication Technology (ICT) and scientific management methods. This paper proposes an industrial internet platform for massive pig farming, namely, IIP4MPF, which aims to leverage intelligent pig breeding, production rate and labor productivity with the use of artificial intelligence, the Internet of Things, and big data intelligence. We conducted requirement analysis for IIP4MPF using software engineering methods, designed the IIP4MPF system for an integrated solution to digital, interconnected, intelligent pig farming. The practice demonstrates that the IIP4MPF platform significantly improves pig farming industry in pig breeding and productivity.
文摘Industry 4.0 has become a reality by fusing the Industrial Internet of Things(IIoT)and Artificial Intelligence(AI),providing huge opportunities in the way manufacturing companies operate.However,the adoption of this paradigm shift,particularly in the field of smart factories and production,is still in its infancy,suffering from various issues,such as the lack of high-quality data,data with high-class imbalance,or poor diversity leading to inaccurate AI models.However,data is severely fragmented across different silos owned by several parties for a range of reasons,such as compliance and legal concerns,preventing discovery and insight-driven IIoT innovation.Notably,valuable and even vital information often remains unutilized as the rise and adoption of AI and IoT in parallel with the concerns and challenges associated with privacy and security.This adversely influences interand intra-organization collaborative use of IIoT data.To tackle these challenges,this article leverages emerging multi-party technologies,privacy-enhancing techniques(e.g.,Federated Learning),and AI approaches to present a holistic,decentralized architecture to form a foundation and cradle for a cross-company collaboration platform and a federated data space to tackle the creeping fragmented data landscape.Moreover,to evaluate the efficiency of the proposed reference model,a collaborative predictive diagnostics and maintenance case study is mapped to an edge-enabled IIoT architecture.Experimental results show the potential advantages of using the proposed approach for multi-party applications accelerating sovereign data sharing through Findable,Accessible,Interoperable,and Reusable(FAIR)principles.
基金the State Major Science and Technology Special Projects(Grant 2018ZX03001023-005)the National Natural Science Foundation of China under Grant No.61831002,61728101,and 61671074the Beijing Natural Science Foundation under Grant No.JQ18016.
文摘The Industrial Internet is a promising technology combining industrial systems with Internet connectivity to significantly improve the product efficiency and reduce production cost by cooperating with intelligent devices,in which the advanced computing,big data analysis and intelligent perception techniques have been involved.This paper comprehensively surveys the recent advances of the Industrial Internet,including reference architectures,key technologies,relative applications and future challenges.Reference architectures which have been proposed for different application scenarios and their corresponding characteristics are summarized.Key technologies,such as cloud computing,mobile edge computing,fog computing,which are classified according to different layers in the architecture,are presented to support a variety of applications in the Industrial Internet.Meanwhile,future challenges and research trends are discussed as well to promote further research of the Industrial Internet.
基金the National Natural Science Foundation of China(Grant No.61871023 and 61931001)Beijing Natural Science Foundation(Grant No.4202054).
文摘The concept of Internet of Everything is like a revolutionary storm,bringing the whole society closer together.Internet of Things(IoT)has played a vital role in the process.With the rise of the concept of Industry 4.0,intelligent transformation is taking place in the industrial field.As a new concept,an industrial IoT system has also attracted the attention of industry and academia.In an actual industrial scenario,a large number of devices will generate numerous industrial datasets.The computing efficiency of an industrial IoT system is greatly improved with the help of using either cloud computing or edge computing.However,privacy issues may seriously harmed interests of users.In this article,we summarize privacy issues in a cloud-or an edge-based industrial IoT system.The privacy analysis includes data privacy,location privacy,query and identity privacy.In addition,we also review privacy solutions when applying software defined network and blockchain under the above two systems.Next,we analyze the computational complexity and privacy protection performance of these solutions.Finally,we discuss open issues to facilitate further studies.
文摘1 Introduction 1.1 Definition and stakeholders of the Industrial Internet The Industrial Internet is a novel network technology system that applies the Internet of Things(IoT)to the manufacturing and industrial sectors.It facilitates the connection of various sensors,devices,systems,factories,and enterprises,enabling the sharing and exchange of data to improve production efficiency,reduce costs,enhance product quality,and enable smart manufacturing.The Industrial Internet serves as a crucial cornerstone and essential support for the Fourth Industrial Revolution,offering specific approaches for industrial digital transformation.Through the comprehensive interconnection of people,machines,and things,the Industrial Internet analyzes various data from intelligent feedback,fostering the development of a new manufacturing and service system.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.