As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be...As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.展开更多
In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology o...In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.展开更多
With the vigorous development of the Internet of Things and 5G technology, such as machine-to-machine and device-todevice, all kinds of data transmission including environmental monitoring and equipment control streng...With the vigorous development of the Internet of Things and 5G technology, such as machine-to-machine and device-todevice, all kinds of data transmission including environmental monitoring and equipment control strengthens the key role of wireless sensor networks in the large-scale wireless communication system. However, especially in the complex industrial wireless applications, the low utilization efficiency of the limited wireless radio resource enhances the coexistence problem between heterogeneous networks. In this paper, from the severe mutual interference point of view, a mathematical model regarding cumulative interferences in the industrial wireless sensor networks is described. Then, from the perspective of mutual interference avoidance, an adaptive power control scheme is proposed in order to handle the normal communication needs on both the primary link and the secondary link. At last, nonlinear programming is taken to solve the corresponding optimization problem. Some typical analyses are given to verify the effectiveness of the proposed scheme on optimizing the tradeoff between the system throughput and energy consumption. Especially, the energy-efficiency of the novel scheme for Industrial Internet of Things is also analysed. Results show that the proposed power control is efficient. The throughput could be enhanced and the energy consumption could be reduced with the guarantee of mutual interference avoidance.展开更多
To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the att...To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the attack path canbe cut off,security threats canbe effectively avoided and the stable operationof the Internet canbe ensured.The existing rule-matching method for equipment identification has limitations such as relying on experience and low scalability.This paper proposes an industrial control device identification method based on PCA-Adaboost,which integrates rule matching and machine learning.We first build a rule base from network data collection and then use single andmulti-protocol rule-matchingmethods to identify the type of industrial control devices.Finally,we utilize PCA-Adaboost to identify unlabeled data.The experimental results show that the recognition rate of this method is better than that of the traditional Nmap device recognitionmethod and the device recognition accuracy rate reaches 99%.The evaluation effect of the test data set is significantly enhanced.展开更多
A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent w...A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent workcells where each controller must be able to handle the load of both cells in case of failure of the other one. The intercommunication is completely wireless between the cells and this feature is investigated. The model incorporates unmodified 802.11b and 802.11g for communication. Sensors send sampled data to both controllers and the controllers to exchange a watchdog. The fault-free and faulty models are both simulated using OPNET Network Modeler. External interference on the critical intercommunication link is also investigated. Results of simulations are presented based on a 95% confidence analysis, guaranteeing correct system performance.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
In industrial control systems,the utilization of deep learning based methods achieves improvements for anomaly detection.However,most current methods ignore the association of inner components in industrial control sy...In industrial control systems,the utilization of deep learning based methods achieves improvements for anomaly detection.However,most current methods ignore the association of inner components in industrial control systems.In industrial control systems,an anomaly component may affect the neighboring components;therefore,the connective relationship can help us to detect anomalies effectively.In this paper,we propose a centrality-aware graph convolution network(CAGCN)for anomaly detection in industrial control systems.Unlike the traditional graph convolution network(GCN)model,we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with the inner relationship in industrial control systems.Our experiments show that compared with GCN,our CAGCN has a better ability to utilize this relationship between components in industrial control systems.The performances of the model are evaluated on the Secure Water Treatment(SWaT)dataset and the Water Distribution(WADI)dataset,the two most common industrial control systems datasets in the field of industrial anomaly detection.The experimental results show that our CAGCN achieves better results on precision,recall,and F1 score than the state-of-the-art methods.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches.The proposed Hammerstein nonline...This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches.The proposed Hammerstein nonlinear systems are made up of a neural fuzzy network(NFN)and a linear state`-space model.The estimation of parameters for Hammerstein systems can be achieved by employing hybrid signals,which consist of step signals and random signals.First,based on the characteristic that step signals do not excite static nonlinear systems,that is,the intermediate variable of the Hammerstein system is a step signal with different amplitudes from the input,the unknown intermediate variables can be replaced by inputs,solving the problem of unmeasurable intermediate variable information.In the presence of step signals,the parameters of the state-space model are estimated using the recursive extended least squares(RELS)algorithm.Moreover,to effectively deal with the interference of measurement noises,a data filtering technique is introduced,and the filtering-based RELS is formulated for estimating the NFN by employing random signals.Finally,according to the structure of the Hammerstein system,the control system is designed by eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system,and it can then be easily controlled by applying a linear controller.The effectiveness and feasibility of the developed identification and control strategy are demonstrated using two industrial simulation cases.展开更多
Control -net网络是一个开放的、高速的、确定性的工业局域网,用于传输对时间有苛刻要求的信息,为对等通信提供实时控制和报文传送。可实现PC机、控制器、操作界面设备、I/O模块等不同设备间的联网通信。网络成功地应用在多种工业自动...Control -net网络是一个开放的、高速的、确定性的工业局域网,用于传输对时间有苛刻要求的信息,为对等通信提供实时控制和报文传送。可实现PC机、控制器、操作界面设备、I/O模块等不同设备间的联网通信。网络成功地应用在多种工业自动控制系统上。展开更多
Cyberattacks on the Industrial Control System(ICS)have recently been increasing,made more intelligent by advancing technologies.As such,cybersecurity for such systems is attracting attention.As a core element of contr...Cyberattacks on the Industrial Control System(ICS)have recently been increasing,made more intelligent by advancing technologies.As such,cybersecurity for such systems is attracting attention.As a core element of control devices,the Programmable Logic Controller(PLC)in an ICS carries out on-site control over the ICS.A cyberattack on the PLC will cause damages on the overall ICS,with Stuxnet and Duqu as the most representative cases.Thus,cybersecurity for PLCs is considered essential,and many researchers carry out a variety of analyses on the vulnerabilities of PLCs as part of preemptive efforts against attacks.In this study,a vulnerability analysis was conducted on the XGB PLC.Security vulnerabilities were identified by analyzing the network protocols and memory structure of PLCs and were utilized to launch replay attack,memory modulation attack,and FTP/Web service account theft for the verification of the results.Based on the results,the attacks were proven to be able to cause the PLC to malfunction and disable it,and the identified vulnerabilities were defined.展开更多
Nowadays,industrial control system(ICS)has begun to integrate with the Internet.While the Internet has brought convenience to ICS,it has also brought severe security concerns.Traditional ICS network traffic anomaly de...Nowadays,industrial control system(ICS)has begun to integrate with the Internet.While the Internet has brought convenience to ICS,it has also brought severe security concerns.Traditional ICS network traffic anomaly detection methods rely on statistical features manually extracted using the experience of network security experts.They are not aimed at the original network data,nor can they capture the potential characteristics of network packets.Therefore,the following improvements were made in this study:(1)A dataset that can be used to evaluate anomaly detection algorithms is produced,which provides raw network data.(2)A request response-based convolutional neural network named RRCNN is proposed,which can be used for anomaly detection of ICS network traffic.Instead of using statistical features manually extracted by security experts,this method uses the byte sequences of the original network packets directly,which can extract potential features of the network packets in greater depth.It regards the request packet and response packet in a session as a Request-Response Pair(RRP).The feature of RRP is extracted using a one-dimensional convolutional neural network,and then the RRP is judged to be normal or abnormal based on the extracted feature.Experimental results demonstrate that this model is better than several other machine learning and neural network models,with F1,accuracy,precision,and recall above 99%.展开更多
Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing ...Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.展开更多
基金Scientific Research Project of Liaoning Province Education Department,Code:LJKQZ20222457&LJKMZ20220781Liaoning Province Nature Fund Project,Code:No.2022-MS-291.
文摘As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network.
基金supported by National Nature Science Foundation of China (Grant No.61471182)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_2993)Jiangsu postgraduate research innovation project (SJCX18_0784)。
文摘In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.
基金partially supported by the Fundamental Research Funds for the Central Universities under Grant No.2015JBM001the National Key Basic Research Program of China under Grant No. 2013CB329101
文摘With the vigorous development of the Internet of Things and 5G technology, such as machine-to-machine and device-todevice, all kinds of data transmission including environmental monitoring and equipment control strengthens the key role of wireless sensor networks in the large-scale wireless communication system. However, especially in the complex industrial wireless applications, the low utilization efficiency of the limited wireless radio resource enhances the coexistence problem between heterogeneous networks. In this paper, from the severe mutual interference point of view, a mathematical model regarding cumulative interferences in the industrial wireless sensor networks is described. Then, from the perspective of mutual interference avoidance, an adaptive power control scheme is proposed in order to handle the normal communication needs on both the primary link and the secondary link. At last, nonlinear programming is taken to solve the corresponding optimization problem. Some typical analyses are given to verify the effectiveness of the proposed scheme on optimizing the tradeoff between the system throughput and energy consumption. Especially, the energy-efficiency of the novel scheme for Industrial Internet of Things is also analysed. Results show that the proposed power control is efficient. The throughput could be enhanced and the energy consumption could be reduced with the guarantee of mutual interference avoidance.
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3102901)the National Natural Science Foundation of China(Grant Nos.61976064,61871140,62272119,62072130)the Guangdong Province Key Research and Development Plan(Grant No.2019B010137004).
文摘To identify industrial control equipment is often a key step in network mapping,categorizing network resources,and attack defense.For example,if vulnerable equipment or devices can be discovered in advance and the attack path canbe cut off,security threats canbe effectively avoided and the stable operationof the Internet canbe ensured.The existing rule-matching method for equipment identification has limitations such as relying on experience and low scalability.This paper proposes an industrial control device identification method based on PCA-Adaboost,which integrates rule matching and machine learning.We first build a rule base from network data collection and then use single andmulti-protocol rule-matchingmethods to identify the type of industrial control devices.Finally,we utilize PCA-Adaboost to identify unlabeled data.The experimental results show that the recognition rate of this method is better than that of the traditional Nmap device recognitionmethod and the device recognition accuracy rate reaches 99%.The evaluation effect of the test data set is significantly enhanced.
文摘A Wireless Networked Control System using 802.11b is used to model fault-tolerance at the controller level of an industrial workcell. The fault-tolerance study in this paper presents the cascading of two independent workcells where each controller must be able to handle the load of both cells in case of failure of the other one. The intercommunication is completely wireless between the cells and this feature is investigated. The model incorporates unmodified 802.11b and 802.11g for communication. Sensors send sampled data to both controllers and the controllers to exchange a watchdog. The fault-free and faulty models are both simulated using OPNET Network Modeler. External interference on the critical intercommunication link is also investigated. Results of simulations are presented based on a 95% confidence analysis, guaranteeing correct system performance.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金supported by the Chinese Academy of Sciences through the Strategic Priority Research Program under Grant No.XDC02020400.
文摘In industrial control systems,the utilization of deep learning based methods achieves improvements for anomaly detection.However,most current methods ignore the association of inner components in industrial control systems.In industrial control systems,an anomaly component may affect the neighboring components;therefore,the connective relationship can help us to detect anomalies effectively.In this paper,we propose a centrality-aware graph convolution network(CAGCN)for anomaly detection in industrial control systems.Unlike the traditional graph convolution network(GCN)model,we utilize the concept of centrality to enhance the ability of graph convolution networks to deal with the inner relationship in industrial control systems.Our experiments show that compared with GCN,our CAGCN has a better ability to utilize this relationship between components in industrial control systems.The performances of the model are evaluated on the Secure Water Treatment(SWaT)dataset and the Water Distribution(WADI)dataset,the two most common industrial control systems datasets in the field of industrial anomaly detection.The experimental results show that our CAGCN achieves better results on precision,recall,and F1 score than the state-of-the-art methods.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
基金Project supported by the National Natural Science Foundation of China(No.62003151)the Changzhou Science and Technology Bureau,China(No.CJ20220065)+1 种基金the Qinglan Project of Jiangsu Province,China(No.2022[29])the Zhongwu Youth Innovative Talents Support Program of Jiangsu University of Technology,China(No.202102003)。
文摘This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises for industrial control by applying filtering and recursive approaches.The proposed Hammerstein nonlinear systems are made up of a neural fuzzy network(NFN)and a linear state`-space model.The estimation of parameters for Hammerstein systems can be achieved by employing hybrid signals,which consist of step signals and random signals.First,based on the characteristic that step signals do not excite static nonlinear systems,that is,the intermediate variable of the Hammerstein system is a step signal with different amplitudes from the input,the unknown intermediate variables can be replaced by inputs,solving the problem of unmeasurable intermediate variable information.In the presence of step signals,the parameters of the state-space model are estimated using the recursive extended least squares(RELS)algorithm.Moreover,to effectively deal with the interference of measurement noises,a data filtering technique is introduced,and the filtering-based RELS is formulated for estimating the NFN by employing random signals.Finally,according to the structure of the Hammerstein system,the control system is designed by eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system,and it can then be easily controlled by applying a linear controller.The effectiveness and feasibility of the developed identification and control strategy are demonstrated using two industrial simulation cases.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT:Ministry of Science and ICT)(Nos.NRF-2016M2A8A4952280 and NRF-2020R1A2C1012187).
文摘Cyberattacks on the Industrial Control System(ICS)have recently been increasing,made more intelligent by advancing technologies.As such,cybersecurity for such systems is attracting attention.As a core element of control devices,the Programmable Logic Controller(PLC)in an ICS carries out on-site control over the ICS.A cyberattack on the PLC will cause damages on the overall ICS,with Stuxnet and Duqu as the most representative cases.Thus,cybersecurity for PLCs is considered essential,and many researchers carry out a variety of analyses on the vulnerabilities of PLCs as part of preemptive efforts against attacks.In this study,a vulnerability analysis was conducted on the XGB PLC.Security vulnerabilities were identified by analyzing the network protocols and memory structure of PLCs and were utilized to launch replay attack,memory modulation attack,and FTP/Web service account theft for the verification of the results.Based on the results,the attacks were proven to be able to cause the PLC to malfunction and disable it,and the identified vulnerabilities were defined.
基金supported by the National Natural Science Foundation of China(No.62076042,No.62102049)the Key Research and Development Project of Sichuan Province(No.2021YFSY0012,No.2020YFG0307,No.2021YFG0332)+3 种基金the Science and Technology Innovation Project of Sichuan(No.2020017)the Key Research and Development Project of Chengdu(No.2019-YF05-02028-GX)the Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)the Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643).
文摘Nowadays,industrial control system(ICS)has begun to integrate with the Internet.While the Internet has brought convenience to ICS,it has also brought severe security concerns.Traditional ICS network traffic anomaly detection methods rely on statistical features manually extracted using the experience of network security experts.They are not aimed at the original network data,nor can they capture the potential characteristics of network packets.Therefore,the following improvements were made in this study:(1)A dataset that can be used to evaluate anomaly detection algorithms is produced,which provides raw network data.(2)A request response-based convolutional neural network named RRCNN is proposed,which can be used for anomaly detection of ICS network traffic.Instead of using statistical features manually extracted by security experts,this method uses the byte sequences of the original network packets directly,which can extract potential features of the network packets in greater depth.It regards the request packet and response packet in a session as a Request-Response Pair(RRP).The feature of RRP is extracted using a one-dimensional convolutional neural network,and then the RRP is judged to be normal or abnormal based on the extracted feature.Experimental results demonstrate that this model is better than several other machine learning and neural network models,with F1,accuracy,precision,and recall above 99%.
文摘Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.