In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient ...In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.展开更多
The development of science and technology is the key to changing human life and promoting social and economic development.As a product of technological development,the widespread application of communication technolog...The development of science and technology is the key to changing human life and promoting social and economic development.As a product of technological development,the widespread application of communication technology has brought a brand new“dawn”to the development of human society.5G wireless communication technology is an advanced wireless communication technology that has recently developed.With the advantages of low energy consumption and high network speed,5G technology has shown very bright development prospects in various fields today.Government,operators and equipment providers are actively promoting and deploying 5G technology,and all links in the industry chain are mature.It is expected that the future market size will reach 17 trillion,especially in today’s industrial field,the application of 5G technology will further enhance work efficiency,ensure work quality,and promote good development in the industrial field.Based on this,this paper will study the development of 5G wireless technology in the industrial field,so as to provide corresponding reference for the good application of 5G technology in the industrial field.展开更多
Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environment...Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard.展开更多
Clock synchronization is one of the most fundamental and crucial network communication strategies.With the expansion of the Industrial Internet in numerous industrial applications,a new requirement for the precision,s...Clock synchronization is one of the most fundamental and crucial network communication strategies.With the expansion of the Industrial Internet in numerous industrial applications,a new requirement for the precision,security,complexity,and other features of the clock synchronization mechanism has emerged in various industrial situations.This paper presents a study of standardized clock synchronization protocols and techniques for various types of networks,and a discussion of how these protocols and techniques might be classified.Following that is a description of how certain clock synchronization protocols and technologies,such as PROFINET,Time-Sensitive Networking(TSN),and other well-known industrial networking protocols,can be applied in a number of industrial situations.This study also investigates the possible future development of clock synchronization techniques and technologies.展开更多
Multi-robot coordination (MRC) is a key challenge for complex artificial intelligence systems, and conventional wireless-communication-based MRC mechanisms that cannot be deployed in radio-frequency-limited environ-...Multi-robot coordination (MRC) is a key challenge for complex artificial intelligence systems, and conventional wireless-communication-based MRC mechanisms that cannot be deployed in radio-frequency-limited environ- ments. In this Letter, we present a promising solution that utilizes indoor omni-directional visible light communication (VLC) technology to realize efficient multi-robot intelligent coordination (MRIC). The specific design is presented along with the implemental details of a practical MRIC experimental platform. The exper- imental results show that a 50 Mb/s on-off-keying-based omni-directional VLC can be realized with an effective distance of 2.3 m and a bit error rate of 〈10^-6 in the proposed MRIC platform.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62071472in part the Program for“Industrial Io T and Emergency Collaboration”Innovative Research Team in CUMT(No.2020ZY002)。
文摘In industrial wireless scenarios,the impulsive noise(IN)incurred by machine running or operation causes a serious influence on the powerlimited industrial wireless communications.It is challenging to ensure efficient and reliable transmission with quality of service(QoS)guarantee for machinetype communication devices(MTCDs).Considering the IN in the industrial process,this paper establishes the multiuser multiple-input single-output(MU-MISO)orthogonal frequency division multiplexing(OFDM)system model,which combines transmitter and receiver design.Two precoding schemes are designed to improve communication effectiveness at the transmitter.More specifically,the precoder design scheme which combines semi-definite relaxation(SDR)with difference-of-two-convex-function(D.C.)iterative algorithm,is developed by utilizing the Dinkelbach method to improve the system effectiveness.To decrease the computational complexity,we devise the quadratic-based fractional programming(QFP)algorithm,which decouples the variables by using a quadratic transform method.On this basis,the IN mitigation scheme is studied to reduce the system error rate(SER)at the receiver.With the goal of improving the reliability of industrial wireless communications,we propose a hybrid nonlinear IN mitigation(HNINM)scheme and then derive its closed-form expression of SER.The simulation results show that the proposed QFP algorithm achieves superior performance while the HNINM scheme decreases the SER of industrial wireless communications.
文摘The development of science and technology is the key to changing human life and promoting social and economic development.As a product of technological development,the widespread application of communication technology has brought a brand new“dawn”to the development of human society.5G wireless communication technology is an advanced wireless communication technology that has recently developed.With the advantages of low energy consumption and high network speed,5G technology has shown very bright development prospects in various fields today.Government,operators and equipment providers are actively promoting and deploying 5G technology,and all links in the industry chain are mature.It is expected that the future market size will reach 17 trillion,especially in today’s industrial field,the application of 5G technology will further enhance work efficiency,ensure work quality,and promote good development in the industrial field.Based on this,this paper will study the development of 5G wireless technology in the industrial field,so as to provide corresponding reference for the good application of 5G technology in the industrial field.
文摘Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFB 2900100.
文摘Clock synchronization is one of the most fundamental and crucial network communication strategies.With the expansion of the Industrial Internet in numerous industrial applications,a new requirement for the precision,security,complexity,and other features of the clock synchronization mechanism has emerged in various industrial situations.This paper presents a study of standardized clock synchronization protocols and techniques for various types of networks,and a discussion of how these protocols and techniques might be classified.Following that is a description of how certain clock synchronization protocols and technologies,such as PROFINET,Time-Sensitive Networking(TSN),and other well-known industrial networking protocols,can be applied in a number of industrial situations.This study also investigates the possible future development of clock synchronization techniques and technologies.
基金supported in part by the National 973Program of China(No.2013CB329205)the National Natural Science Foundation of China(No.61401032)the Funds of Beijing Advanced Innovation Center for Future Internet Technology of Beijing University of Technology(BJUT),P.R.China
文摘Multi-robot coordination (MRC) is a key challenge for complex artificial intelligence systems, and conventional wireless-communication-based MRC mechanisms that cannot be deployed in radio-frequency-limited environ- ments. In this Letter, we present a promising solution that utilizes indoor omni-directional visible light communication (VLC) technology to realize efficient multi-robot intelligent coordination (MRIC). The specific design is presented along with the implemental details of a practical MRIC experimental platform. The exper- imental results show that a 50 Mb/s on-off-keying-based omni-directional VLC can be realized with an effective distance of 2.3 m and a bit error rate of 〈10^-6 in the proposed MRIC platform.