Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to contr...Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.展开更多
With the full development of disk-resident databases(DRDB)in recent years,it is widely used in business and transactional applications.In long-term use,some problems of disk databases are gradually exposed.For applica...With the full development of disk-resident databases(DRDB)in recent years,it is widely used in business and transactional applications.In long-term use,some problems of disk databases are gradually exposed.For applications with high real-time requirements,the performance of using disk database is not satisfactory.In the context of the booming development of the Internet of things,domestic real-time databases have also gradually developed.Still,most of them only support the storage,processing,and analysis of data values with fewer data types,which can not fully meet the current industrial process control system data types,complex sources,fast update speed,and other needs.Facing the business needs of efficient data collection and storage of the Internet of things,this paper optimizes the transaction processing efficiency and data storage performance of the memory database,constructs a lightweight real-time memory database transaction processing and data storage model,realizes a lightweight real-time memory database transaction processing and data storage model,and improves the reliability and efficiency of the database.Through simulation,we proved that the cache hit rate of the cache replacement algorithm proposed in this paper is higher than the traditional LRU(Least Recently Used)algorithm.Using the cache replacement algorithm proposed in this paper can improve the performance of the system cache.展开更多
基金The authors thank the MOE AcRF Grant in Singapore for financial support of the projects on Precision Healthcare Development,Manufacturing and Supply Chain Optimization(Grant No.R-279-000-513-133)Advanced Process Control and Machine Learning Methods for Enhanced Continuous Manufacturing of Pharmaceutical Products(Grant No.R-279-000-541-114).
文摘Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.
基金supported by the National Key R&D Program of China“Key technologies for coordination and interoperation of power distribution service resource”[2021YFB1302400]“Research on Digitization and Intelligent Application of Low-Voltage Power Distribution Equipment”[SGSDDK00PDJS2000375].
文摘With the full development of disk-resident databases(DRDB)in recent years,it is widely used in business and transactional applications.In long-term use,some problems of disk databases are gradually exposed.For applications with high real-time requirements,the performance of using disk database is not satisfactory.In the context of the booming development of the Internet of things,domestic real-time databases have also gradually developed.Still,most of them only support the storage,processing,and analysis of data values with fewer data types,which can not fully meet the current industrial process control system data types,complex sources,fast update speed,and other needs.Facing the business needs of efficient data collection and storage of the Internet of things,this paper optimizes the transaction processing efficiency and data storage performance of the memory database,constructs a lightweight real-time memory database transaction processing and data storage model,realizes a lightweight real-time memory database transaction processing and data storage model,and improves the reliability and efficiency of the database.Through simulation,we proved that the cache hit rate of the cache replacement algorithm proposed in this paper is higher than the traditional LRU(Least Recently Used)algorithm.Using the cache replacement algorithm proposed in this paper can improve the performance of the system cache.