Mineralogical, geochemical, and textural analyses of the white sandstones (Abu Thora Fm.) of Carboniferous in the Abu Rodeiyim region show that they are fluviomarine, well-sorted, highpurity, and high-grade silica S...Mineralogical, geochemical, and textural analyses of the white sandstones (Abu Thora Fm.) of Carboniferous in the Abu Rodeiyim region show that they are fluviomarine, well-sorted, highpurity, and high-grade silica SiO2 (average 99.56%). The results indicate that by simple treatment, the white sandstones can reach a high degree of purity, suitable for different industrial purposes (e.g. manufacture of silicon photovoltaic, crystal, and TV screens, art, and domestic and optical glass).展开更多
Chemical modification and industrial utilization of lignin based on its structure were reviewed in this paper. And its economic value and significance for the society and environmental protection were also evaluated.
In this review paper,the applications of biomineralization in environmental geotechnics are analyzed.Three environmental geotechnics scenarios,namely heavy metal contamination immobilization and removal,waste and CO_(...In this review paper,the applications of biomineralization in environmental geotechnics are analyzed.Three environmental geotechnics scenarios,namely heavy metal contamination immobilization and removal,waste and CO_(2)containment,and recycled use of industrial byproducts,are discussed and evaluated regarding current trends and prospects.The biomineralization process,specifically the Microbially Induced Carbonate Precipitation(MICP)technology,is an effective solution for immobilizing heavy metals through co-precipitation with calcium carbonate,with successful results in cleaning up contaminated soils.The nature of biomineralization enhances earth material strength and decreases permeability,making it suitable for waste and CO_(2)containment.Additionally,using industrial byproducts in MICP technology can improve the physical,mechanical,and hydraulic properties of earth materials,making it a potential solution for efficient waste utilization.In conclusion,the applications of biomineralization in environmental geotechnics hold great promise for solving various environmental problems.However,further research is needed to better understand the control and consistency of biomineralization processes,the durability of biominerals,the scale of applications,and environmental concerns.展开更多
The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet. The content of granulated slag ranges from 50% - 60% wt in the glass compositions. The samples were...The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet. The content of granulated slag ranges from 50% - 60% wt in the glass compositions. The samples were analyzed by DTA , SEM and XRD. The results show that the main crystal phase of the glass- ceramic is β-CaSiO3 , Which is in scattering fiber or column form. The applying properties have also been measured.展开更多
Thallium(Tl) is a typical toxic heavy metal,with higher toxicity to mammals than Hg,Cd,and Pb.Accurate assessments of its environmental exposure and flux are central to effective management and control of Tl pollution...Thallium(Tl) is a typical toxic heavy metal,with higher toxicity to mammals than Hg,Cd,and Pb.Accurate assessments of its environmental exposure and flux are central to effective management and control of Tl pollution.This paper first presents in detail the environmental exposure and flux of Tl by typical industrial activities utilizing Tl-bearing pyrite minerals to produce sulfuric acid.For this purpose,sequential extraction and Inductively Coupled Plasma Mass Spectrometry(ICP-MS) were used to investigate total content and geo-chemical partitioning of Tl in raw pyrite ores and solid roasting wastes,thereby uncovering Tl distribution and transformation during the production process.Results showed that some portions of Tl bearing in the minerals went into vapor,which transferred Tl into different processes;and some portions of Tl went into water during the gas washing procedure,leaving some other portions remained in the solid slags.More importantly,detailed investigation revealed that 40% of Tl in the pyrite minerals was active,among which 25% of Tl originally in the pyrite minerals was washed into water during gas cleaning process and 15% of active Tl retained in the slags.The latter portion of active Tl could be possibly transferred to the soil or water with the slag deposal or being reused;and 60% of Tl remained relatively stable in the residual phase.展开更多
文摘Mineralogical, geochemical, and textural analyses of the white sandstones (Abu Thora Fm.) of Carboniferous in the Abu Rodeiyim region show that they are fluviomarine, well-sorted, highpurity, and high-grade silica SiO2 (average 99.56%). The results indicate that by simple treatment, the white sandstones can reach a high degree of purity, suitable for different industrial purposes (e.g. manufacture of silicon photovoltaic, crystal, and TV screens, art, and domestic and optical glass).
文摘Chemical modification and industrial utilization of lignin based on its structure were reviewed in this paper. And its economic value and significance for the society and environmental protection were also evaluated.
基金supported by the Natural Science Foundation of China(42007246)and the Fundamental Research Funds for the Central Universities.
文摘In this review paper,the applications of biomineralization in environmental geotechnics are analyzed.Three environmental geotechnics scenarios,namely heavy metal contamination immobilization and removal,waste and CO_(2)containment,and recycled use of industrial byproducts,are discussed and evaluated regarding current trends and prospects.The biomineralization process,specifically the Microbially Induced Carbonate Precipitation(MICP)technology,is an effective solution for immobilizing heavy metals through co-precipitation with calcium carbonate,with successful results in cleaning up contaminated soils.The nature of biomineralization enhances earth material strength and decreases permeability,making it suitable for waste and CO_(2)containment.Additionally,using industrial byproducts in MICP technology can improve the physical,mechanical,and hydraulic properties of earth materials,making it a potential solution for efficient waste utilization.In conclusion,the applications of biomineralization in environmental geotechnics hold great promise for solving various environmental problems.However,further research is needed to better understand the control and consistency of biomineralization processes,the durability of biominerals,the scale of applications,and environmental concerns.
基金Funded by Financial Project of Ministry of Education (No. 200065)
文摘The glass-ceramic was prepared on the basis of materials of granulated slag containing high-calcium oxide and cullet. The content of granulated slag ranges from 50% - 60% wt in the glass compositions. The samples were analyzed by DTA , SEM and XRD. The results show that the main crystal phase of the glass- ceramic is β-CaSiO3 , Which is in scattering fiber or column form. The applying properties have also been measured.
基金supported by the United Sponsorship of the National Natural Science Foundation of China and the Guangdong Provincial Government(Grant No.U0633001)the National Natural Science Foundation of China(Grant No.20477007)the Guangdong Provincial Sponsorship for Key Science and Technology(Grant No.2004A3038002)
文摘Thallium(Tl) is a typical toxic heavy metal,with higher toxicity to mammals than Hg,Cd,and Pb.Accurate assessments of its environmental exposure and flux are central to effective management and control of Tl pollution.This paper first presents in detail the environmental exposure and flux of Tl by typical industrial activities utilizing Tl-bearing pyrite minerals to produce sulfuric acid.For this purpose,sequential extraction and Inductively Coupled Plasma Mass Spectrometry(ICP-MS) were used to investigate total content and geo-chemical partitioning of Tl in raw pyrite ores and solid roasting wastes,thereby uncovering Tl distribution and transformation during the production process.Results showed that some portions of Tl bearing in the minerals went into vapor,which transferred Tl into different processes;and some portions of Tl went into water during the gas washing procedure,leaving some other portions remained in the solid slags.More importantly,detailed investigation revealed that 40% of Tl in the pyrite minerals was active,among which 25% of Tl originally in the pyrite minerals was washed into water during gas cleaning process and 15% of active Tl retained in the slags.The latter portion of active Tl could be possibly transferred to the soil or water with the slag deposal or being reused;and 60% of Tl remained relatively stable in the residual phase.