期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced activity and durability of FeCoCrMoCBY nanoglass in acidic hydrogen evolution reaction
1
作者 Mengyang Yan Shuangqin Chen +7 位作者 Shangshu Wu Xuechun Zhou Shu Fu Di Wang Christian Kübel Horst Hahn Si Lan Tao Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期212-220,共9页
In the present work,a multi-element nanoglass(m-NG)of FeCoCrMoCBY is obtained first time by the laser ablation combined with inert gas condensation(laser-IGC)technique.Compared with the conventional rapid-quenched met... In the present work,a multi-element nanoglass(m-NG)of FeCoCrMoCBY is obtained first time by the laser ablation combined with inert gas condensation(laser-IGC)technique.Compared with the conventional rapid-quenched metallic glass(MG)with identical composition,the Fe-based m-NG demonstrates a superior performance as a self-supported electrocatalyst for hydrogen evolution reaction(HER)in acidic solution.The enhanced HER activity of m-NG is proposed to be closely related to its high en-ergy states,which is originated from the unique inhomogeneous nanostructures with a high density of low-coordinated atoms.Additionally,the Fe-based m-NG exhibits an outstanding comprehensive catalytic performance even beyond the commercial Pt/C catalyst in long-term test due to its self-optimization ability.This work not only opens the way to the preparation of m-NGs by the novel laser-IGC technique,but also makes a great contribution to developing low-cost,high-efficient,and super-durable HER electrocat-alysts in acidic environment. 展开更多
关键词 NANOGLASS inert gas condensations High energy states Hydrogen evolution reactions
原文传递
Ultrahard BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy formed by nanoscale diffusion-induced phase transition 被引量:1
2
作者 Junjie Wang Zongde Kou +10 位作者 Shu Fu Shangshu Wu Sinan Liu Mengyang Yan Zhiqiang Ren Di Wang Zesheng You Si Lan Horst Hahn Xun-Li Wang Tao Feng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第20期29-39,共11页
In the current work,the BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy(nc-HEA)with ultrahigh hardness was formed by nanoscale diffusion-induced phase transition in a nanocomposite.First,a dual-phase Al/CoCrFeN... In the current work,the BCC-AlCoCrFeNi bulk nanocrystalline high-entropy alloy(nc-HEA)with ultrahigh hardness was formed by nanoscale diffusion-induced phase transition in a nanocomposite.First,a dual-phase Al/CoCrFeNi nanocrystalline high-entropy alloy composite(nc-HEAC)was prepared by a laser source inert gas condensation equipment(laser-IGC).The as-prepared nc-HEAC is composed of well-mixed FCC-Al and FCC-CoCrFeNi nanocrystals.Then,the heat treatment was used to trigger the interdiffusion between Al and CoCrFeNi nanocrystals and form an FCC-AlCoCrFeNi phase.With the increase of the annealing temperature,element diffusion intensifies,and the Al Co Cr Fe Ni phase undergoes a phase transition from FCC to BCC structure.Finally,the BCC-AlCoCrFe Ni bulk nc-HEA with high Al content(up to 50 at.%)was obtained for the first time.Excitingly,the nc-HEAC(Al-40%)sample exhibits an unprecedented ultra-high hardness of 1124 HV after annealing at 500℃ for 1 h.We present a systematic investigation of the relationship between the microstructure evolution and mechanical properties during annealing,and the corresponding micro-mechanisms in different annealing stages are revealed.The enhanced nanoscale thermal diffusion-induced phase transition process dominates the mechanical performance evolution of the nc-HEACs,which opens a new pathway for the design of high-performance nanocrystalline alloy materials. 展开更多
关键词 High-entropy alloy NANOCRYSTALLINE Composites Diffusion-induced phase transition Mechanical inert gas condensation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部