LiFePO4/C was synthesized by high temperature solid-state method with cheap Fe2O3, LiH2PO4 and glucose as raw materials in absence of inert gas. The sample had ordered olivine-type structure other impurities character...LiFePO4/C was synthesized by high temperature solid-state method with cheap Fe2O3, LiH2PO4 and glucose as raw materials in absence of inert gas. The sample had ordered olivine-type structure other impurities characterized by the test of X-ray diffraction (XRD). The charge-discharge test showed the sample could demonstrate 120.5 mAh/g at 0.2C rate with good cyclic capability. The powder microeleetrode cyclic voltammetry test indicated that the redox process of the sample had good reversibility.展开更多
This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a m...This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW.The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG.In addition,the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength,hardness,and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG.The vibration during FSW enhanced dynamic recrystallization,which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%,whereas those of FSW and TIG were approximately 74%and 67%,respectively.展开更多
The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were...The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were analyzed and discussed.In this study,defectfree joints were obtained using a rotational speed of 7000 r/min,an axial feeding displacement of 12 mm,and an axial force of 20-22 kN.The results indicated that within these welding parameters,metallurgical bonding between the plug and plate is achieved by the formation of recrystallized grains.The microstructural features of the FPPW joint can be divided into different regions,including the heat-affected zone(HAZ),thermomechanically affected zone(TMAZ),recrystallization zone(RZ),heat-affected zone in the TIG weld(TIG-HAZ),and the thermomechanically affected zone in the TIG weld(TIG-TMAZ).In the TIG-TMAZ,the grains were highly deformed and elongated due to the shear and the extrusion that produces the plug during the FPPW process.The main reason for the softening in the TMAZ is determined to be the dissolution ofθ’and coarsening ofθprecipitate particles.In a tensile test,the FPPW joint welded with an axial force of 22 kN showed the highest ultimate tensile strength of 237 MPa.The locations of cracks and factures in the TIG-TMAZ were identified.The fracture morphology of the tensile sample showed good plasticity and toughness of the joints.展开更多
The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further stu...The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further studied.On the pre-weld heat-treated samples,upon solving the secondaryγ′particles in the matrix,primaryγ′particles in the base metal grew to"ogdoadically diced cubes"of about 2μm in side lengths.The pre-weld heat treatment reduced the hardness of the base metal to about HV 310.Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ.The constitutional melting of the secondary,eutectic,and Zr-rich phases promoted the liquation cracking in the HAZ.The microstructure of the weld fusion zones showed the presence of fine spheroidalγ′particles with sizes of about 0.2μm after the post-weld heat treatment,which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals,respectively.Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.展开更多
The present study is aimed to compare the microstructure characteristics and mechanical properties of AA6082 in T6 condition of tubular joints fabricated by tungsten inert gas welding (TIG) and metal inert gas weldi...The present study is aimed to compare the microstructure characteristics and mechanical properties of AA6082 in T6 condition of tubular joints fabricated by tungsten inert gas welding (TIG) and metal inert gas welding (MIG) processes. The effect of welding processes was analysed based on optical microscopy image, tensile testing, and Vickers micro-hardness measurements. The results showed that the tensile strengths of the TIG-welded joints were better than those of the MIG-welded joints, due to the contribution of fine equiaxed grains formation with narrower spacing arms. In terms of joint efficiency, the TIG process produced more reliable strength, which was about 25% higher compared to the MIG-joint. A significant decay of hardness was recorded in the adjacent of the weld bead zone, shown in both joints, related to phase transformation, induced by high temperatures experienced by material. A very low hardness, which was about 1.08 GPa, was recorded in the MIG-weldcd specimens. The extent of the heat-affected-zone (HAZ) in the MIG-welded joints was slightly wider than those of the TIG-welded specimens, which corresponded with a higher heat input per unit length.展开更多
Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been ...Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been paid to the relationships between the arc sound and welding parameters.Some non-linear mapping models correlating the arc sound to welding parameters have been established with the help of neural networks.However,the research of utilizing arc sound to monitor and diagnose welding process is still in its infancy.A self-made real-time sensing system is applied to make a study of arc sound under typical penetration status,including partial penetration,unstable penetration,full penetration and excessive penetration,in metal inert-gas(MIG) flat tailored welding with spray transfer.Arc sound is pretreated by using wavelet de-noising and short-time windowing technologies,and its characteristics,characterizing weld penetration status,of time-domain,frequency-domain,cepstrum-domain and geometric-domain are extracted.Subsequently,high-dimensional eigenvector is constructed and feature-level parameters are successfully fused utilizing the concept of primary principal component analysis(PCA).Ultimately,60-demensional eigenvector is replaced by the synthesis of 8-demensional vector,which achieves compression for feature space and provides technical supports for pattern classification of typical penetration status with the help of arc sound in MIG welding in the future.展开更多
Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at ...Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.展开更多
Anesthetics are extremely important in modem surgery to greatly reduce the patient,s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely...Anesthetics are extremely important in modem surgery to greatly reduce the patient,s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia.展开更多
The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,boreh...The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation.展开更多
Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a dis...Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.展开更多
Zincalume steel(G550)is commonly used in various construction fields because of its high corrosion resistance and good mechanical properties.In recent years,a number of steel companies have massively produced zincalum...Zincalume steel(G550)is commonly used in various construction fields because of its high corrosion resistance and good mechanical properties.In recent years,a number of steel companies have massively produced zincalume steel(G550)with large volumes of waste.For the reduction of massive industrial wastes,the zincalume steel(G550)was welded in the lap joint configuration using different welding parameters in the metal inert gas(MIG)welding and laser beam welding(LBW)process in this study.The MIG welding and LBW are more welcomed welding methods due to their high efficiency and low cost.However,they are different as the LBW offers welding speed three to five times faster than MIG welding,while LBW’s heat transfer to workpieces is much less than MIG welding,which can avoid some distortions.The microstructure of zincalume steel(G550)was investigated using scanning electron microscopy(SEM)and the microstructure characterizations of welded specimens were analyzed.The experiment found the columnar dendrites extended under the heat flow direction during the MIG welding and LBW process.Thus,the columnar grains were formed in between the equiaxed zone and fusion zone(FZ)at high heat input and slow cooling rate.Moreover,the grain size of FZ was comparatively smaller than heat affected zone(HAZ)and base metal(BM).展开更多
Dilution of a pad weld must be limited to a certain critical level to improve its wear and/or corrosion properties.To do that,a novel single wire indirect arc metal inert gas welding process operated in streaming mode...Dilution of a pad weld must be limited to a certain critical level to improve its wear and/or corrosion properties.To do that,a novel single wire indirect arc metal inert gas welding process operated in streaming mode was realized.A metal inert gas welding torch,arranged perpendicular to a substrate in vertical position,is fixed with an auxiliary tungsten electrode horizontally.The arc is ignited between a wire through the torch and the auxiliary electrode.The substrate is not electrically connected.The welding current is set in the range of streaming mode.304 stainless steel was pad welded on Q235 substrates in vertical position by this process.Microstructures were analyzed with optical microscope.Dilution ratios were measured with stereo light microscope and calculated.The results show that,after eliminating interference of the massive torch setup,the dilution ratio of the pad weld with optimized parameters is 5.07%,much less than that with a metal inert gas welding process,which is 26.46%.The pad weld is bonded to the substrate without defects.Microstructures of the pad weld consist of columnar austenite and ferrite between the columns.The dilution ratio increases with increasing welding current or welding velocity,and decreases with increasing distance to the substrate.展开更多
The effect of the shielding gas composition and the cathode processing history on the weld formation quality during welding with a non-consumable electrode at high current was studied. The major reasons for pores, “w...The effect of the shielding gas composition and the cathode processing history on the weld formation quality during welding with a non-consumable electrode at high current was studied. The major reasons for pores, “waists” and undercuts formation during welding at high currents and speed are discrete melt movement to the solidification front due to the arc decline from the cathode axis and significant melt overhanging in the pool tail part caused by excessive peak pressure on the discharge axis. Cathode flow dispersion causes the lack of displacement of the molten metal which results in its laminar flow in the weld pool, uniform flow of the metal to the crystallization front and sound weld formation. The melt movement in the weld pool and eventually the welded joint quality is determined by the pressure distribution pattern on the welded metal surface and the anode spot lag from the electrode. It was demonstrated that non-consumable electrode configurations that provide arcing with a diffuse cathode spot and increased helium concentration in the inert atmosphere during welding with a conical electrode allow sound weld formation.展开更多
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion...The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.展开更多
Gas metal arc welding(GMAW)is also referred as the metal inert gas(MIG)welding which is a process of welding done by the formation of an electric arc between the consumable wire electrode and the workpiece.Through the...Gas metal arc welding(GMAW)is also referred as the metal inert gas(MIG)welding which is a process of welding done by the formation of an electric arc between the consumable wire electrode and the workpiece.Through the welding process,a continuous flow of inert gas is supplied,and it avoids the weld being subjected to react with atmospheric air.The process can be automatic or semi-automatic where the main input parameters like current and the voltage can be direct and constant,respectively.Not only the current and voltage the welding quality depends on some more input parameters such as arc gap,velocity,and temperature.In this paper,we explain about a setup which is capable of real-time monitoring of input parameters mentioned above and selecting the best MIG welding parameters for the mild steel.The setup is composed of several sensors and microcontrollers for the collection and the measurement of the input parameters.The samples were categorized according to the federate and the voltage adjustment of the selected welding machine.Then the final objective was to identify the samples of the weld with different parameter changes which are monitored through the system.For the analysis,the samples were subjected to tensile and hardness tests,and microstructure tests to find the dependence of the input parameters which effect for the weld quality.Finally,the experimental results verified the effectiveness of the system for the selection of the quality weld.展开更多
Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant...Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.展开更多
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen...There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.展开更多
In order to study the welding process,microstructure and properties of Al-Mg-Mn-Sc-Zr alloy,comparative methods of friction stir welding(FSW) and tungsten inert gas(TIG) were applied to the two conditions of this ...In order to study the welding process,microstructure and properties of Al-Mg-Mn-Sc-Zr alloy,comparative methods of friction stir welding(FSW) and tungsten inert gas(TIG) were applied to the two conditions of this alloy,namely hot rolled plate and cold rolled-annealed plate.The relationships between microstructures and properties of the welded joints were investigated by means of optical microscopy and transmission electron microscopy.Compared with the base metal,the strength of FSW and TIG welded joints decreased,and the FSW welding coefficients were higher than the TIG welding coefficients.The loss of substructure strengthening and a very little loss of precipitation strengthening of Al3(Sc,Zr) cause the decreased strength of FSW welded joint.But for the TIG welded joint,the disappearance of both the strain hardening and most precipitation strengthening effect of Al3(Sc,Zr) particles contributed to its softening.At the same time,the grains in weld nugget zone of FSW welded joints were finer than those in the molten zone of TIG welded joints.展开更多
2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zo...2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.展开更多
Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness t...Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175℃ for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.展开更多
基金We are grateful for the financial support from the Natural Science Foundation of Hunan Province(Grant No.04JJ0388)and from Central South University.
文摘LiFePO4/C was synthesized by high temperature solid-state method with cheap Fe2O3, LiH2PO4 and glucose as raw materials in absence of inert gas. The sample had ordered olivine-type structure other impurities characterized by the test of X-ray diffraction (XRD). The charge-discharge test showed the sample could demonstrate 120.5 mAh/g at 0.2C rate with good cyclic capability. The powder microeleetrode cyclic voltammetry test indicated that the redox process of the sample had good reversibility.
文摘This study compared the microstructure and mechanical characteristics of AA6061-T6 joints produced using friction stir welding(FSW),friction stir vibration welding(FSVW),and tungsten inert gas welding(TIG).FSVW is a modified version of FSW wherein the joining specimens are vibrated normal to the welding line during FSW.The results indicated that the weld region grains for FSVW and FSW were equiaxed and were smaller than the grains for TIG.In addition,the weld region grains for FSVW were finer compared with those for FSW.Results also showed that the strength,hardness,and toughness values of the joints produced by FSVW were higher than those of the other joints produced by FSW and TIG.The vibration during FSW enhanced dynamic recrystallization,which led to the development of finer grains.The weld efficiency of FSVW was approximately 81%,whereas those of FSW and TIG were approximately 74%and 67%,respectively.
基金financially supported by the National Natural Science Foundation of China(Nos.51875401 and 52075376).
文摘The friction pull plug welding(FPPW)of the 2219-T87 tungsten inert gas(TIG)welded joint was investigated,and the microstructures,precipitate evolution,mechanical properties,and fracture morphologies of this joint were analyzed and discussed.In this study,defectfree joints were obtained using a rotational speed of 7000 r/min,an axial feeding displacement of 12 mm,and an axial force of 20-22 kN.The results indicated that within these welding parameters,metallurgical bonding between the plug and plate is achieved by the formation of recrystallized grains.The microstructural features of the FPPW joint can be divided into different regions,including the heat-affected zone(HAZ),thermomechanically affected zone(TMAZ),recrystallization zone(RZ),heat-affected zone in the TIG weld(TIG-HAZ),and the thermomechanically affected zone in the TIG weld(TIG-TMAZ).In the TIG-TMAZ,the grains were highly deformed and elongated due to the shear and the extrusion that produces the plug during the FPPW process.The main reason for the softening in the TMAZ is determined to be the dissolution ofθ’and coarsening ofθprecipitate particles.In a tensile test,the FPPW joint welded with an axial force of 22 kN showed the highest ultimate tensile strength of 237 MPa.The locations of cracks and factures in the TIG-TMAZ were identified.The fracture morphology of the tensile sample showed good plasticity and toughness of the joints.
文摘The main aim of this study was to investigate liquation cracking in the heat-affected zone(HAZ)of the IN939 superalloy upon tungsten inert gas welding.A solid solution and age-hardenable filler metals were further studied.On the pre-weld heat-treated samples,upon solving the secondaryγ′particles in the matrix,primaryγ′particles in the base metal grew to"ogdoadically diced cubes"of about 2μm in side lengths.The pre-weld heat treatment reduced the hardness of the base metal to about HV 310.Microstructural studies using optical and fieldemission scanning electron microscopy revealed that the IN939 alloy was susceptible to liquation cracking in the HAZ.The constitutional melting of the secondary,eutectic,and Zr-rich phases promoted the liquation cracking in the HAZ.The microstructure of the weld fusion zones showed the presence of fine spheroidalγ′particles with sizes of about 0.2μm after the post-weld heat treatment,which increased the hardness of the weld pools to about HV 350 and 380 for the Hastelloy X and IN718 filler metals,respectively.Application of a suitable solid solution filler metal could partially reduce the liquation cracking in the HAZ of IN939 alloy.
基金University Science Malaysia (USM) and Malaysia Ministry of Education (MoE) for their technical and financial support
文摘The present study is aimed to compare the microstructure characteristics and mechanical properties of AA6082 in T6 condition of tubular joints fabricated by tungsten inert gas welding (TIG) and metal inert gas welding (MIG) processes. The effect of welding processes was analysed based on optical microscopy image, tensile testing, and Vickers micro-hardness measurements. The results showed that the tensile strengths of the TIG-welded joints were better than those of the MIG-welded joints, due to the contribution of fine equiaxed grains formation with narrower spacing arms. In terms of joint efficiency, the TIG process produced more reliable strength, which was about 25% higher compared to the MIG-joint. A significant decay of hardness was recorded in the adjacent of the weld bead zone, shown in both joints, related to phase transformation, induced by high temperatures experienced by material. A very low hardness, which was about 1.08 GPa, was recorded in the MIG-weldcd specimens. The extent of the heat-affected-zone (HAZ) in the MIG-welded joints was slightly wider than those of the TIG-welded specimens, which corresponded with a higher heat input per unit length.
基金supported by Harbin Academic Pacesetter Foundation of China (Grant No. RC2012XK006002)Zhegjiang Provincial Natural Science Foundation of China (Grant No. Y1110262)+2 种基金Ningbo Municipal Natural Science Foundation of China (Grant No. 2011A610148)Ningbo Municipal Major Industrial Support Project of China (Grant No.2011B1007)Heilongjiang Provincial Natural Science Foundation of China (Grant No. E2007-01)
文摘Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been paid to the relationships between the arc sound and welding parameters.Some non-linear mapping models correlating the arc sound to welding parameters have been established with the help of neural networks.However,the research of utilizing arc sound to monitor and diagnose welding process is still in its infancy.A self-made real-time sensing system is applied to make a study of arc sound under typical penetration status,including partial penetration,unstable penetration,full penetration and excessive penetration,in metal inert-gas(MIG) flat tailored welding with spray transfer.Arc sound is pretreated by using wavelet de-noising and short-time windowing technologies,and its characteristics,characterizing weld penetration status,of time-domain,frequency-domain,cepstrum-domain and geometric-domain are extracted.Subsequently,high-dimensional eigenvector is constructed and feature-level parameters are successfully fused utilizing the concept of primary principal component analysis(PCA).Ultimately,60-demensional eigenvector is replaced by the synthesis of 8-demensional vector,which achieves compression for feature space and provides technical supports for pattern classification of typical penetration status with the help of arc sound in MIG welding in the future.
文摘Super-clean and super-spherical FGH4095 superalloy powder is produced by the ceramic-free electrode inductionmelt inert gas atomization(EIGA) technique.A continuous and steady-state liquid metal flow is achieved at high-frequency(350 k Hz) alternating current and high electric power(100 k W).The superalloy is immersed in a high-frequency induction coil,and the liquid metal falling into a supersonic nozzle is atomized by an Ar gas of high kinetic gas energy.Numerical calculations are performed to optimize the structure parameters for the nozzle tip.The undesired oxidation reaction of alloying elements starts at 1000℃ with the reaction originating from the active sites on the powder surfaces,leading to the formation of oxides,MexOy.The role of active sites and kinetic factors associated with the diffusion of oxygen present in the atomization gas streams are also examined.The observed results reveal that the oxidation process occurring at the surface of the produced powders gradually moves toward the core,and that there exists a clear interface between the product layer and the reactant.The present study lays a theoretical foundation for controlling the oxidation of nickel-based superalloy powders from the powder process step.
基金supported by the Supercomputing Center of Chinese Academy of Sciences in Beijing,Chinathe Shanghai Supercomputer Center,China+3 种基金the National Natural Science Foundation of China(Grant Nos.21273268,11290164,and 11175230)the Startup Funding from Shanghai Institute of Applied Physics,Chinese Academy of Sciences(Grant No.Y290011011)"Hundred People Project"from Chinese Academy of Sciences"Pu-jiang Rencai Project"from Science and Technology Commission of Shanghai Municipality,China(Grant No.13PJ1410400)
文摘Anesthetics are extremely important in modem surgery to greatly reduce the patient,s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia.
文摘The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation.
文摘Arc pressure is the key influencing factor to forming of molten pool. Countering the characteristic of tungsten inert gas arc welding with micro gap for tantalum sheet, according to the fundament of arc physics, a distribution model of arc pressure and forming mechanism of molten pool with micro butt gap are proposed, and the influences of arc pressure on forming of molten pool are discussed. Experimental researches for the dynamic formation process of weld molten pool by using high-speed vidicon camera show that when butt gap is appropriate, that is from 0. 1 to 0. 15 mm, molten metals formed on two workpiece uplift and grow up first, then are fused and form uniform molten pool finally.
基金This research was supported in part by the SEGi University Sdn Bhd(Grant Number:SEGiIRF/2018-10/FoEBE-17/80)and in kind contribution of University of Malaya.
文摘Zincalume steel(G550)is commonly used in various construction fields because of its high corrosion resistance and good mechanical properties.In recent years,a number of steel companies have massively produced zincalume steel(G550)with large volumes of waste.For the reduction of massive industrial wastes,the zincalume steel(G550)was welded in the lap joint configuration using different welding parameters in the metal inert gas(MIG)welding and laser beam welding(LBW)process in this study.The MIG welding and LBW are more welcomed welding methods due to their high efficiency and low cost.However,they are different as the LBW offers welding speed three to five times faster than MIG welding,while LBW’s heat transfer to workpieces is much less than MIG welding,which can avoid some distortions.The microstructure of zincalume steel(G550)was investigated using scanning electron microscopy(SEM)and the microstructure characterizations of welded specimens were analyzed.The experiment found the columnar dendrites extended under the heat flow direction during the MIG welding and LBW process.Thus,the columnar grains were formed in between the equiaxed zone and fusion zone(FZ)at high heat input and slow cooling rate.Moreover,the grain size of FZ was comparatively smaller than heat affected zone(HAZ)and base metal(BM).
文摘Dilution of a pad weld must be limited to a certain critical level to improve its wear and/or corrosion properties.To do that,a novel single wire indirect arc metal inert gas welding process operated in streaming mode was realized.A metal inert gas welding torch,arranged perpendicular to a substrate in vertical position,is fixed with an auxiliary tungsten electrode horizontally.The arc is ignited between a wire through the torch and the auxiliary electrode.The substrate is not electrically connected.The welding current is set in the range of streaming mode.304 stainless steel was pad welded on Q235 substrates in vertical position by this process.Microstructures were analyzed with optical microscope.Dilution ratios were measured with stereo light microscope and calculated.The results show that,after eliminating interference of the massive torch setup,the dilution ratio of the pad weld with optimized parameters is 5.07%,much less than that with a metal inert gas welding process,which is 26.46%.The pad weld is bonded to the substrate without defects.Microstructures of the pad weld consist of columnar austenite and ferrite between the columns.The dilution ratio increases with increasing welding current or welding velocity,and decreases with increasing distance to the substrate.
基金supported by the Volgograd State Technical University,in conducting this research study as a part of the state assignment of the Ministry of Science and Higher Education of the Russian Federation(Grant No.0637-2020-0006)。
文摘The effect of the shielding gas composition and the cathode processing history on the weld formation quality during welding with a non-consumable electrode at high current was studied. The major reasons for pores, “waists” and undercuts formation during welding at high currents and speed are discrete melt movement to the solidification front due to the arc decline from the cathode axis and significant melt overhanging in the pool tail part caused by excessive peak pressure on the discharge axis. Cathode flow dispersion causes the lack of displacement of the molten metal which results in its laminar flow in the weld pool, uniform flow of the metal to the crystallization front and sound weld formation. The melt movement in the weld pool and eventually the welded joint quality is determined by the pressure distribution pattern on the welded metal surface and the anode spot lag from the electrode. It was demonstrated that non-consumable electrode configurations that provide arcing with a diffuse cathode spot and increased helium concentration in the inert atmosphere during welding with a conical electrode allow sound weld formation.
基金financially supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3055)the Natural Science Foundation of Hunan Province,China(Nos.2023JJ30671,2020JJ4114)+5 种基金the Natural Science Foundation of Changsha City,China(No.Kq2208264)National Key Project of Research and Development Plan of China(Nos.2021YFC1910505,2021YFC1910504)the Young Core Teacher Foundation of Hunan Province,China(No.150220001)Key Research and Development Program of Guangdong Province,China(No.2020B010186002)the National Natural Science Foundation of China(No.51601229)the Key-Area Research and Development Program of Foshan City,China(No.2230032004640).
文摘The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density.
文摘Gas metal arc welding(GMAW)is also referred as the metal inert gas(MIG)welding which is a process of welding done by the formation of an electric arc between the consumable wire electrode and the workpiece.Through the welding process,a continuous flow of inert gas is supplied,and it avoids the weld being subjected to react with atmospheric air.The process can be automatic or semi-automatic where the main input parameters like current and the voltage can be direct and constant,respectively.Not only the current and voltage the welding quality depends on some more input parameters such as arc gap,velocity,and temperature.In this paper,we explain about a setup which is capable of real-time monitoring of input parameters mentioned above and selecting the best MIG welding parameters for the mild steel.The setup is composed of several sensors and microcontrollers for the collection and the measurement of the input parameters.The samples were categorized according to the federate and the voltage adjustment of the selected welding machine.Then the final objective was to identify the samples of the weld with different parameter changes which are monitored through the system.For the analysis,the samples were subjected to tensile and hardness tests,and microstructure tests to find the dependence of the input parameters which effect for the weld quality.Finally,the experimental results verified the effectiveness of the system for the selection of the quality weld.
基金supported by the National Natural Science Foundation of China (No. 52176097)。
文摘Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.
文摘There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.
基金Project (MKPT-2005-16ZD) supported by the National Key Scientific and Technological Project of ChinaProject supported by the Postdoctoral Science Foundation of Central South University,China
文摘In order to study the welding process,microstructure and properties of Al-Mg-Mn-Sc-Zr alloy,comparative methods of friction stir welding(FSW) and tungsten inert gas(TIG) were applied to the two conditions of this alloy,namely hot rolled plate and cold rolled-annealed plate.The relationships between microstructures and properties of the welded joints were investigated by means of optical microscopy and transmission electron microscopy.Compared with the base metal,the strength of FSW and TIG welded joints decreased,and the FSW welding coefficients were higher than the TIG welding coefficients.The loss of substructure strengthening and a very little loss of precipitation strengthening of Al3(Sc,Zr) cause the decreased strength of FSW welded joint.But for the TIG welded joint,the disappearance of both the strain hardening and most precipitation strengthening effect of Al3(Sc,Zr) particles contributed to its softening.At the same time,the grains in weld nugget zone of FSW welded joints were finer than those in the molten zone of TIG welded joints.
文摘2219-T8 aluminum alloys were butt welded by the double-pass tungsten inert gas (TIG) arc welding process. The transverse tensile test of the joint showed that the fracture mainly occurred in the partially melted zone (PMZ). Effects of the PMZ on the fracture behavior were systematically studied. Continuous intergranular eutectics were observed in the PMZ close to the fusion line. Away from the fusion line, the intergranular eutectics in the PMZ became discontinuous. The fracture morphology and the microhardness distribution of the joint showed that the PMZ was gradient material with different mechanical properties, which strongly affected the fracture process. It was observed that the crack initiated in the PMZ near the front weld toe, and propagated in the PMZ away from the fusion line. Then, the crack tip was blunt when it propagated into the PMZ with higher plasticity. Finally, the rest part of the joint was shear fractured.
基金financially supported by the Natural Science Foundation Project of Chongqing City (No.cstc2012jjA50002)
文摘Aging treatment and various heat input conditions and mechanical properties of TIG welded 606I-T6 alloy joints were adopted to investigate the microstructural evolution by microstructural observations, microhardness tests, and tensile tests. With an increase in heat input, the width of the heat-affected zone (HAZ) increases and grains in the fusion zone (FZ) coarsen. Moreover, the hardness of the HAZ decreases, whereas that of the FZ decreases initially and then increases with an increase in heat input. Low heat input results in the low ultimate tensile strength of the welded joints due to the presence of partial penetrations and pores in the welded joints. After a simple artificial aging treatment at 175℃ for 8 h, the microstructure of the welded joints changes slightly. The mechanical properties of the welded joints enhance significantly after the aging process as few precipitates distribute in the welded seam.