For an evaluation of a thermal conductivity of Zr + 30 vol% ZrO2 simulated inert matrix nuclear fuel pellet, a simulated fuel pellet was fabricated using a hot-pressing method at 800°C in a vacuum and at a 20 MPa...For an evaluation of a thermal conductivity of Zr + 30 vol% ZrO2 simulated inert matrix nuclear fuel pellet, a simulated fuel pellet was fabricated using a hot-pressing method at 800°C in a vacuum and at a 20 MPa load. And several thermophysical properties of the simulated inert matrix fuel pellet were measured and calculated. The thermal diffusivity and linear thermal expansion as a function of temperature of the simulated fuel pellet were measured using a laser flash method and a dilatometry, respectively. Finally, based on the experimental data, the thermal conductivity of the simulated inert matrix fuel pellet was calculated and evaluated.展开更多
文摘For an evaluation of a thermal conductivity of Zr + 30 vol% ZrO2 simulated inert matrix nuclear fuel pellet, a simulated fuel pellet was fabricated using a hot-pressing method at 800°C in a vacuum and at a 20 MPa load. And several thermophysical properties of the simulated inert matrix fuel pellet were measured and calculated. The thermal diffusivity and linear thermal expansion as a function of temperature of the simulated fuel pellet were measured using a laser flash method and a dilatometry, respectively. Finally, based on the experimental data, the thermal conductivity of the simulated inert matrix fuel pellet was calculated and evaluated.