针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary ...针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary inertia virtualizing translational mass based Tuned Mass Damper,简称RTMD),进行RTMD控制系统的设计概念,以单自由度结构对象为例建立了附加RTMD控制系统的运动方程,分析了RTMD控制系统参数对结构振动控制效果的影响规律。结果表明控制效果与系统的质量比、惯质比、阻尼比等参数密切相关,相关规律也可以推广到一般多自由度结构体系一阶振动的调谐吸振减振控制。进行了模型振动台试验研究,时域分析和频域分析结果均表明,试验结果与基于理论模型的数值分析结果一致性良好,验证了RTMD控制系统理论模型的正确性、设计参数的合理性以及控制系统应用于实际问题的可行性。展开更多
The properties and characteristics of torque free gyros with rotational symmetry and changing moments of inertia are the subject of the subsequent discussion. It shall be understood that the symmetry can be expressed ...The properties and characteristics of torque free gyros with rotational symmetry and changing moments of inertia are the subject of the subsequent discussion. It shall be understood that the symmetry can be expressed by the notation (A=B) which does not presuppose geometric symmetry, where A and B are the principle moments of inertia about x and y axes respectively. We study the case of a torque free gyro upon which no external torque is acting. The equations of motion are derived when the origin of the xyz-coordinate system coincides with the gyro’s mass center c. This study is useful for the satellites, which have rotational symmetry and changed inertia moments, the antennas and the solar power collector systems.展开更多
In this paper, the Steiner area formula and the polar moment of inertia were expressed during one-parameter closed planar homothetic inverse motions in complex plane. The Steiner point was defined when the rotation nu...In this paper, the Steiner area formula and the polar moment of inertia were expressed during one-parameter closed planar homothetic inverse motions in complex plane. The Steiner point was defined when the rotation number was different zero and it was called the Steiner normal when the rotation number was equal to zero. The fixed pole point was given with its components and its relation between Steiner point or Steiner normal was explained. The sagittal motion of a telescopic crane was considered as an example. This motion was described by a double hinge consisting of the fixed control panel of the telescopic crane and the moving arm of the telescopic crane. The theoretical concepts and results were applied for this motion.展开更多
Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncert...Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.展开更多
文摘针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary inertia virtualizing translational mass based Tuned Mass Damper,简称RTMD),进行RTMD控制系统的设计概念,以单自由度结构对象为例建立了附加RTMD控制系统的运动方程,分析了RTMD控制系统参数对结构振动控制效果的影响规律。结果表明控制效果与系统的质量比、惯质比、阻尼比等参数密切相关,相关规律也可以推广到一般多自由度结构体系一阶振动的调谐吸振减振控制。进行了模型振动台试验研究,时域分析和频域分析结果均表明,试验结果与基于理论模型的数值分析结果一致性良好,验证了RTMD控制系统理论模型的正确性、设计参数的合理性以及控制系统应用于实际问题的可行性。
文摘The properties and characteristics of torque free gyros with rotational symmetry and changing moments of inertia are the subject of the subsequent discussion. It shall be understood that the symmetry can be expressed by the notation (A=B) which does not presuppose geometric symmetry, where A and B are the principle moments of inertia about x and y axes respectively. We study the case of a torque free gyro upon which no external torque is acting. The equations of motion are derived when the origin of the xyz-coordinate system coincides with the gyro’s mass center c. This study is useful for the satellites, which have rotational symmetry and changed inertia moments, the antennas and the solar power collector systems.
文摘In this paper, the Steiner area formula and the polar moment of inertia were expressed during one-parameter closed planar homothetic inverse motions in complex plane. The Steiner point was defined when the rotation number was different zero and it was called the Steiner normal when the rotation number was equal to zero. The fixed pole point was given with its components and its relation between Steiner point or Steiner normal was explained. The sagittal motion of a telescopic crane was considered as an example. This motion was described by a double hinge consisting of the fixed control panel of the telescopic crane and the moving arm of the telescopic crane. The theoretical concepts and results were applied for this motion.
文摘Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.