Axiomatization of Shannon entropy is a subject that has received lots of attention in the information theory literature.While Shannon entropy is defined on probability distribution,we define a new type of entropy on t...Axiomatization of Shannon entropy is a subject that has received lots of attention in the information theory literature.While Shannon entropy is defined on probability distribution,we define a new type of entropy on the set of partitions of finite subsets of metric spaces,which has a rich algebraic structure as a partially ordered set.We propose an axiomatization of an entropy-like measure of partitions of sets of objects located in metric spaces,and we derive an analytic expression of this new type of entropy referred to as inertial entropy.This approach starts with the notion of inertia of a partition and includes a study of the behavior of the sum of square errors of a partition.In this context,we characterize the chain of partitions produced by the Ward hierarchical clustering method.Starting from inertial entropies of partitions,we introduce conditional entropies which,in turn,generate metrics on partitions of finite sets.These metrics are used as external validation tools for clusterings of labeled data sets.The metric generated by inertial entropy can be used to validate data clustering for labeled data sets.This type of validation aims to determine to what extend labeling of the data coincides with the clustering obtained algorithmically,and we obtain a high degree of consistency of the data labeling with the results of several hierarchical clusterings.展开更多
Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action an...Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action and reaction. Many scientists including Newton, Mach, and Einstein recognized that inertial force has no reaction that originates on mass. Einstein calls the lack of reaction to the inertial force a serious criticism of the space-time continuum concept. Presented is the hypothesis that the inertial force develops in an interaction of two masses via the force field. The inertial force created by such a field has reaction force. The dynamic gravitational field predicted is strong enough to be detected in the laboratory. This article describes the laboratory experiment which can prove or disprove the hypothesis of the dynamic gravitational field. The inertial force, calculated using the equation for the dynamic gravitational field, agrees with the behavior of inertial force observed in the experiments on the Earth. The movement of the planets in our solar system calculated using that equation is the same as that calculated using Newton’s method. The space properties calculated by the candidate equation explain the aberration of light and the results of light propagation experiments. The dynamic gravitational field can explain the discrepancy between the observed velocity of stars in the galaxy and those predicted by Newton’s theory of gravitation without the need for the dark matter hypothesis.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global...The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations.These PMIs are natural and significant for the geodetic,geophysical,and geodynamic problems of Mars,which are functions of internal density distributions.In this study,a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion.We deduced the polar oblateness J^(2)and the equatorial ellipticity J_(22)of Mars to be 1.9566×10^(−3)and 6.3106×10^(−5),respectively.The preferred principal moments of inertia of Mars are A=2.66589×1036 kg·m^(2),B=2.66775×10^(36)kg·m^(2),and C=2.68125×10^(36)kg·m^(2).These values indicate that Mar is slightly triaxial.The equatorial principal moment of inertia of the Martian core is 1.46008×10^(35)kg·m^(2),accounting for~5.47%of the planet’s PMI;this result is critical for investigating the density and size of the core of Mars,and the planet’s free core nutation.展开更多
Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-l...Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-local hidden-variable (NLHV) theory. Mathematical formalisms are derived for masses and observers in different fabric densities. Findings—A disjointed equivalence is predicted, whereby inertial and gravitational masses are equivalent in any one situation, but a different equivalence holds when the fabric densities change. Consequently this theory predicts that the gravitational constant G varies with fabric density, and hence would be different across the universe and across time. Not only is the gravitational constant non-constant, but the formulation of gravitation changes with fabric density. Specifically, the theory predicts gravity is stronger at genesis (and the end of the universe) such that orbit velocity v<sub>B</sub> ∝ (where r<sub>B</sub> is orbit radius), compared to weaker gravitation at middle life epochs with r<sub>B</sub><sub> </sub>∝ . The current Earth location and epoch correspond to the latter case, i.e. Newtonian gravitation is recovered. The findings disfavour the existence of both dark energy and dark matter, and instead attribute these effects to differences in the fabric density. Originality—The work makes the contribution of deriving a mass equivalence relationship that includes fabric density, identifying a disjointed mass equivalence, and showing that the gravitation formulation itself changes with relative fabric densities.展开更多
The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-parti...The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.展开更多
电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了...电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了一种自适应时间常数的分频控制策略,时间常数根据混合储能系统(hybridenergy storage system, HESS)的SOC而动态调整以改变功率分配。首先,通过分析储能SOC与虚拟惯性的关系,并考虑储能充放电极限问题,研究兼顾SOC、电压变化率以及电压幅值的自适应虚拟惯性控制策略,提高系统惯性。然后,建立控制系统的小信号模型,分析虚拟惯性系数对系统的影响。最后,基于Matlab/Simulink搭建直流配电网仿真模型,验证了所提控制策略能合理分配HESS功率,提高超级电容器利用率,改善直流电压与功率稳定性。展开更多
文摘Axiomatization of Shannon entropy is a subject that has received lots of attention in the information theory literature.While Shannon entropy is defined on probability distribution,we define a new type of entropy on the set of partitions of finite subsets of metric spaces,which has a rich algebraic structure as a partially ordered set.We propose an axiomatization of an entropy-like measure of partitions of sets of objects located in metric spaces,and we derive an analytic expression of this new type of entropy referred to as inertial entropy.This approach starts with the notion of inertia of a partition and includes a study of the behavior of the sum of square errors of a partition.In this context,we characterize the chain of partitions produced by the Ward hierarchical clustering method.Starting from inertial entropies of partitions,we introduce conditional entropies which,in turn,generate metrics on partitions of finite sets.These metrics are used as external validation tools for clusterings of labeled data sets.The metric generated by inertial entropy can be used to validate data clustering for labeled data sets.This type of validation aims to determine to what extend labeling of the data coincides with the clustering obtained algorithmically,and we obtain a high degree of consistency of the data labeling with the results of several hierarchical clusterings.
文摘Analysis of free fall and acceleration of the mass on the Earth shows that using abstract entities such as absolute space or inertial space to explain mass dynamics leads to the violation of the principle of action and reaction. Many scientists including Newton, Mach, and Einstein recognized that inertial force has no reaction that originates on mass. Einstein calls the lack of reaction to the inertial force a serious criticism of the space-time continuum concept. Presented is the hypothesis that the inertial force develops in an interaction of two masses via the force field. The inertial force created by such a field has reaction force. The dynamic gravitational field predicted is strong enough to be detected in the laboratory. This article describes the laboratory experiment which can prove or disprove the hypothesis of the dynamic gravitational field. The inertial force, calculated using the equation for the dynamic gravitational field, agrees with the behavior of inertial force observed in the experiments on the Earth. The movement of the planets in our solar system calculated using that equation is the same as that calculated using Newton’s method. The space properties calculated by the candidate equation explain the aberration of light and the results of light propagation experiments. The dynamic gravitational field can explain the discrepancy between the observed velocity of stars in the galaxy and those predicted by Newton’s theory of gravitation without the need for the dark matter hypothesis.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
基金supported by the National Key Research and Development Program (2022YFF0503200)the National Natural Science Foundation of China (42274114)the Key Program of the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS-202102)
文摘The principal moments of inertia(PMIs)with the principal axes are usually taken as the dynamic figure parameters of Mars;they can be deduced from satellite-observed degree-two gravitational potentials in recent global gravity models and from the dynamic ellipticities resulting from precession observations.These PMIs are natural and significant for the geodetic,geophysical,and geodynamic problems of Mars,which are functions of internal density distributions.In this study,a closed and concise formula for determining the PMIs of the entire planet and its core was developed based on the second invariants of gravity and a multipole expansion.We deduced the polar oblateness J^(2)and the equatorial ellipticity J_(22)of Mars to be 1.9566×10^(−3)and 6.3106×10^(−5),respectively.The preferred principal moments of inertia of Mars are A=2.66589×1036 kg·m^(2),B=2.66775×10^(36)kg·m^(2),and C=2.68125×10^(36)kg·m^(2).These values indicate that Mar is slightly triaxial.The equatorial principal moment of inertia of the Martian core is 1.46008×10^(35)kg·m^(2),accounting for~5.47%of the planet’s PMI;this result is critical for investigating the density and size of the core of Mars,and the planet’s free core nutation.
文摘Problem—Contemporary physics offers no underlying reason for the equivalence of inertial and gravitational mass. Approach—The equivalence is examined from the new physics provided by the cordus theory, being a non-local hidden-variable (NLHV) theory. Mathematical formalisms are derived for masses and observers in different fabric densities. Findings—A disjointed equivalence is predicted, whereby inertial and gravitational masses are equivalent in any one situation, but a different equivalence holds when the fabric densities change. Consequently this theory predicts that the gravitational constant G varies with fabric density, and hence would be different across the universe and across time. Not only is the gravitational constant non-constant, but the formulation of gravitation changes with fabric density. Specifically, the theory predicts gravity is stronger at genesis (and the end of the universe) such that orbit velocity v<sub>B</sub> ∝ (where r<sub>B</sub> is orbit radius), compared to weaker gravitation at middle life epochs with r<sub>B</sub><sub> </sub>∝ . The current Earth location and epoch correspond to the latter case, i.e. Newtonian gravitation is recovered. The findings disfavour the existence of both dark energy and dark matter, and instead attribute these effects to differences in the fabric density. Originality—The work makes the contribution of deriving a mass equivalence relationship that includes fabric density, identifying a disjointed mass equivalence, and showing that the gravitation formulation itself changes with relative fabric densities.
文摘The single-particle Schrödinger fluid model is designed mainly to calculate the moments of inertia of the axially symmetric deformed nuclei by assuming that each nucleon in the nucleus is moving in a single-particle potential which is deformed with time t, through its parametric dependence on a classical shape variable α(t). Also, the Nilsson model is designed for the calculations of the single-particle energy levels, the magnetic dipole moments, and the electric quadrupole moments of axially symmetric deformed nuclei by assuming that all the nucleons are moving in the field of an anisotropic oscillator potential. On the other hand, the nuclear superfluidity model is designed for the calculations of the nuclear moments of inertia and the electric quadrupole moments of deformed nuclei which have no axes of symmetry by assuming that the nucleons are moving in a quadruple deformed potential. Furthermore, the cranked Nilsson model is designed for the calculations of the total nuclear energy and the quadrupole moments of deformed nuclei which have no axes of symmetry by modifying the Nilsson potential to include second and fourth order oscillations. Accordingly, to investigate whether the six p-shell isotopes <sup>6</sup>Li, <sup>7</sup>Li, <sup>8</sup>Li, <sup>9</sup>Li, <sup>10</sup>Li, and <sup>11</sup>Li have axes of symmetry or not, we applied the four mentioned models to each nucleus by calculating their moments of inertia, their magnetic dipole moments, and their electric quadrupole moments by varying the deformation parameter β and the non-axiality parameter γ in wide ranges of values for this reason. Hence for the assumption that these isotopes are deformed and have axes of symmetry, we applied the single-particle Schrödinger fluid model and the Nilsson model. On the other hand, for the assumption that these isotopes are deformed and have no axes of symmetry, we applied the cranked Nilsson model and the nuclear super fluidity model. As a result of our calculations, we can conclude that the nucleus <sup>6</sup>Li may be assumed to be deformed and has an axis of symmetry.