In an autonomous droop-based microgrid,the sys-tem voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations a...In an autonomous droop-based microgrid,the sys-tem voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at the second-ary control level without any communication network,the chal-lenges associated with these methods and their abilities to simul-taneously restore microgrid VaF have not been fully investigat-ed.In this paper,a multi-input multi-output(MIMO)model ref-erence adaptive controller(MRAC)is proposed to achieve VaF restoration while accurate power sharing among distributed generators(DGs)is maintained.The proposed MRAC,without any communication network,is designed based on two meth-ods:droop-based and inertia-based methods.For the microgrid,the suggested design procedure is started by defining a model reference in which the control objectives,such as the desired settling time,the maximum tolerable overshoot,and steady-state error,are considered.Then,a feedback-feedforward con-troller is established,of which the gains are adaptively tuned by some rules derived from the Lyapunov stability theory.Through some simulations in MATLAB/SimPowerSystem Tool-box,the proposed MRAC demonstrates satisfactory perfor-mance.展开更多
文摘In an autonomous droop-based microgrid,the sys-tem voltage and frequency(VaF)are subject to deviations as load changes.Despite the existence of various control methods aimed at correcting system frequency deviations at the second-ary control level without any communication network,the chal-lenges associated with these methods and their abilities to simul-taneously restore microgrid VaF have not been fully investigat-ed.In this paper,a multi-input multi-output(MIMO)model ref-erence adaptive controller(MRAC)is proposed to achieve VaF restoration while accurate power sharing among distributed generators(DGs)is maintained.The proposed MRAC,without any communication network,is designed based on two meth-ods:droop-based and inertia-based methods.For the microgrid,the suggested design procedure is started by defining a model reference in which the control objectives,such as the desired settling time,the maximum tolerable overshoot,and steady-state error,are considered.Then,a feedback-feedforward con-troller is established,of which the gains are adaptively tuned by some rules derived from the Lyapunov stability theory.Through some simulations in MATLAB/SimPowerSystem Tool-box,the proposed MRAC demonstrates satisfactory perfor-mance.