期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Precision-Positioning Method for a High-Acceleration Low-Load Mechanism Based on Optimal Spatial and Temporal Distribution of Inertial Energy 被引量:5
1
作者 Xin Chen Youdun Bai +2 位作者 Zhijun Yang Jian Gao Gongfa Chen 《Engineering》 SCIE EI 2015年第3期391-398,共8页
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicres... High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms. 展开更多
关键词 high-acceleration low-load mechanism precision positioning spatial and temporal distribution inertial energy equivalent static loads method (ESLM) velocity planning
下载PDF
On intense proton beam generation and transport in hollow cones 被引量:2
2
作者 J.J.Honrubia A.Morace M.Murakami 《Matter and Radiation at Extremes》 SCIE EI CAS 2017年第1期28-36,共9页
Proton generation,transport and interaction with hollow cone targets are investigated by means of two-dimensional PIC simulations.A scaled-down hollow cone with gold walls,a carbon tip and a curved hydrogen foil insid... Proton generation,transport and interaction with hollow cone targets are investigated by means of two-dimensional PIC simulations.A scaled-down hollow cone with gold walls,a carbon tip and a curved hydrogen foil inside the cone has been considered.Proton acceleration is driven by a 10^(20) W·cm^(-2) and 1 ps laser pulse focused on the hydrogen foil.Simulations show an important surface current at the cone walls which generates a magnetic field.This magnetic field is dragged by the quasi-neutral plasma formed by fast protons and co-moving electrons when they propagate towards the cone tip.As a result,a tens of kT B z field is set up at the cone tip,which is strong enough to deflect the protons and increase the beam divergence substantially.We propose using heavy materials at the cone tip and increasing the laser intensity in order to mitigate magnetic field generation and proton beam divergence. 展开更多
关键词 inertial fusion energy Ion fast ignition Laser driven ion acceleration
下载PDF
Inertial confinement fusion ignition achieved at the National Ignition Facility–an editorial 被引量:5
3
作者 C.N.Danson L.A.Gizzi 《High Power Laser Science and Engineering》 SCIE EI CAS CSCD 2023年第3期73-75,共3页
On behalf of all at High Power Laser Science and Engineering we would like to congratulate the team at Lawrence Livermore National Laboratory(LLNL)on demonstrating fusion ignition at the National Ignition Facility.Thi... On behalf of all at High Power Laser Science and Engineering we would like to congratulate the team at Lawrence Livermore National Laboratory(LLNL)on demonstrating fusion ignition at the National Ignition Facility.This major scientific achievement was realized on the 5 December 2022 at the LLNL and announced at a press briefing on the 13 December 2022 by the United States Department of Energy’s National Nuclear Security Administration.This was a historic milestone and the culmination of decades of effort. 展开更多
关键词 inertial confinement fusion fusion ignition inertial fusion energy high power lasers
原文传递
Review on high repetition rate and mass production of the cryogenic targets for laser IFE 被引量:5
4
作者 I.V.Aleksandrova E.R.Koresheva 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2017年第2期28-51,共24页
In inertial fusion energy(IFE) research, a considerable attention has recently been focused on the issue of large target fabrication for MJ-class laser facilities. The ignition and high-gain target designs require a c... In inertial fusion energy(IFE) research, a considerable attention has recently been focused on the issue of large target fabrication for MJ-class laser facilities. The ignition and high-gain target designs require a condensed uniform layer of hydrogen fuel on the inside of a spherical shell. In this report, we discuss the current status and further trends in the area of developing the layering techniques intended to produce ignition, and layering techniques proposed to high repetition rate and mass production of IFE targets. 展开更多
关键词 free-standing and line-moving targets high-repetition-rate fuel supply inertial fusion energy target mass production
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部