The inertial secondary flow is particularly important tbr hydrodynamic lbcusing and particle manipulation m biomed- ical research. In this paper, the development of the inertial secondary flow structure in a curved mi...The inertial secondary flow is particularly important tbr hydrodynamic lbcusing and particle manipulation m biomed- ical research. In this paper, the development of the inertial secondary flow structure in a curved microchannel was investi- gated by the multi relaxation time lattice Boltzmann equation model with a force term. The numerical results indicate that the viscous and inertial competition dominates the development of secondary flow structure development. The Reynolds number, Dean number, and the cross section aspect ratio influence significantly on the development of the secondary vor- texes. Both the intensity of secondary flow and the distance between the normalized vortex centers are functions of Dean numbers but independent of channel curvature radius. In addition, the competition mechanism between the viscous and inertial effects were discussed by performing the particle focusing experiments. The present investigation provides an improved understanding of the development of inertial secondary flows in curved microchannels.展开更多
During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which...During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).展开更多
This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome t...This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome the lack of incremental objectivity whenever large deformations occur in solid-like regimes and to remove computational singularities in fluid-like regimes close to rest, the elastic–perfectly plastic theory based on the Drucker–Prager yield criterion is combined with the theory of dense granular flows. By implementing some new modifications at the boundaries and removing all ghost particles, smoothed particle hydrodynamics (SPH) is used as the framework for the method. A number of benchmark problems have been solved to show the capabilities of the new modified SPH method. Precise prediction of both location and pressure makes the modifications comparable with the previous works on SPH. Finally, the method is used to solve the classic 2D dry granular cliff collapse problem and to model dry granular material flow inside a rotary drum. The outcomes of the numerical simulation show good agreement with tabletop experiments and published results.展开更多
Cilia-induced flow of viscoelastic mucus through an idealized two-dimensional model of the human trachea is presented.The cilia motion is simulated by a metachronal wave pattern which enables the mobilization of highl...Cilia-induced flow of viscoelastic mucus through an idealized two-dimensional model of the human trachea is presented.The cilia motion is simulated by a metachronal wave pattern which enables the mobilization of highly viscous mucus even at nonzero Reynolds numbers.The viscoelastic mucus is analyzed with the upper convected Maxwell viscoelastic formulation which features a relaxation time and accurately captures normal stress generation in shear flows.The governing equations are transformed from fixed to wave(laboratory)frame with appropriate variables and resulting differential equations are perturbed about wave number.The trachea is treated as an axisymmetric ciliated tube.Radial and axial distributions in axial velocity are calculated via the regular perturbation method and pressure rise is computed with numerical integration using symbolic software MATHEMATICA^(‘TM’).The influence of selected parameters which is cilia length,and Maxwell viscoelastic material parameter i.e.relaxation time for prescribed values of wave number are visualized graphically.Pressure rise is observed to increase considerably with elevation in both cilia length and relaxation time whereas the axial velocity is markedly decelerated.The simulations provide some insight into viscous-dominated cilia propulsion of rheological mucus and also serve as a benchmark for more advanced modeling.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2011CB707601)the National Natural Science Foundation of China(Grant Nos.51306037 and 51375089)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2012M511647)
文摘The inertial secondary flow is particularly important tbr hydrodynamic lbcusing and particle manipulation m biomed- ical research. In this paper, the development of the inertial secondary flow structure in a curved microchannel was investi- gated by the multi relaxation time lattice Boltzmann equation model with a force term. The numerical results indicate that the viscous and inertial competition dominates the development of secondary flow structure development. The Reynolds number, Dean number, and the cross section aspect ratio influence significantly on the development of the secondary vor- texes. Both the intensity of secondary flow and the distance between the normalized vortex centers are functions of Dean numbers but independent of channel curvature radius. In addition, the competition mechanism between the viscous and inertial effects were discussed by performing the particle focusing experiments. The present investigation provides an improved understanding of the development of inertial secondary flows in curved microchannels.
基金The Fundamental Research Fund Project of the First Institute of OceanographyMinistry of Natural Resources+1 种基金under contract No.GY022Y07the National Natural Science Foundation of China under contract No.42106232。
文摘During the 10th Chinese Arctic scientific expedition carried out in the summer of 2019,the surface current in the high-latitude areas of the Arctic Ocean was observed using a self-developed surface drifting buoy,which was initially deployed in the Chukchi Sea.The buoy traversed the Chukchi Sea,Chukchi Abyssal Plain,Mendeleev Ridge,Makarov Basin,and Canada Basin over a period of 632 d.After returning to the Mendeleev Ridge,it continued to drift toward the pole.Overall,the track of the buoy reflected the characteristics of the transpolar drift and Chukchi Slope Current,as well as the inertial flow,cross-ridge surface flow,and even the surface disorganized flow for some time intervals.The results showed that:(1)the transpolar drift mainly occurs in the Chukchi Abyssal Plain,Mendeleev Ridge,and western Canada Basin to the east of the ridge where sea ice concentration is high,and the average northward flow velocity in the region between 79.41°N and 86.32°N was 5.1 cm/s;(2)the average surface velocity of the Chukchi Slope Current was 13.5 cm/s,and while this current moves westward along the continental slope,it also extends northwestward across the continental slope and flows to the deep sea;and(3)when sea ice concentration was less than 50%,the inertial flow was more significant(the maximum observed inertial flow was 26 cm/s,and the radius of the inertia circle was 3.6 km).
文摘This paper proposes a novel hybrid method to simulate the dry granular flow of materials over a wide range of inertial numbers that simultaneously covers the quasi-static and dense granular flow regimes. To overcome the lack of incremental objectivity whenever large deformations occur in solid-like regimes and to remove computational singularities in fluid-like regimes close to rest, the elastic–perfectly plastic theory based on the Drucker–Prager yield criterion is combined with the theory of dense granular flows. By implementing some new modifications at the boundaries and removing all ghost particles, smoothed particle hydrodynamics (SPH) is used as the framework for the method. A number of benchmark problems have been solved to show the capabilities of the new modified SPH method. Precise prediction of both location and pressure makes the modifications comparable with the previous works on SPH. Finally, the method is used to solve the classic 2D dry granular cliff collapse problem and to model dry granular material flow inside a rotary drum. The outcomes of the numerical simulation show good agreement with tabletop experiments and published results.
文摘Cilia-induced flow of viscoelastic mucus through an idealized two-dimensional model of the human trachea is presented.The cilia motion is simulated by a metachronal wave pattern which enables the mobilization of highly viscous mucus even at nonzero Reynolds numbers.The viscoelastic mucus is analyzed with the upper convected Maxwell viscoelastic formulation which features a relaxation time and accurately captures normal stress generation in shear flows.The governing equations are transformed from fixed to wave(laboratory)frame with appropriate variables and resulting differential equations are perturbed about wave number.The trachea is treated as an axisymmetric ciliated tube.Radial and axial distributions in axial velocity are calculated via the regular perturbation method and pressure rise is computed with numerical integration using symbolic software MATHEMATICA^(‘TM’).The influence of selected parameters which is cilia length,and Maxwell viscoelastic material parameter i.e.relaxation time for prescribed values of wave number are visualized graphically.Pressure rise is observed to increase considerably with elevation in both cilia length and relaxation time whereas the axial velocity is markedly decelerated.The simulations provide some insight into viscous-dominated cilia propulsion of rheological mucus and also serve as a benchmark for more advanced modeling.