K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonex-pansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by usi...K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonex-pansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by using the hybrid method in mathematical programming. The purpose of this paper is to modify the hybrid iteration method of K. Nakajo and W. Takahashi through the monotone hybrid method, and to prove strong convergence theorems. The convergence rate of iteration process of the monotone hybrid method is faster than that of the iteration process of the hybrid method of K. Nakajo and W. Takahashi. In the proofs in this article, Cauchy sequence method is used to avoid the use of the demiclosedness principle and Opial's condition.展开更多
Proximal point algorithm(PPA)is a useful algorithm framework and has good convergence properties.Themain difficulty is that the subproblems usually only have iterative solutions.In this paper,we propose an inexact cus...Proximal point algorithm(PPA)is a useful algorithm framework and has good convergence properties.Themain difficulty is that the subproblems usually only have iterative solutions.In this paper,we propose an inexact customized PPA framework for twoblock separable convex optimization problem with linear constraint.We design two types of inexact error criteria for the subproblems.The first one is absolutely summable error criterion,under which both subproblems can be solved inexactly.When one of the two subproblems is easily solved,we propose another novel error criterion which is easier to implement,namely relative error criterion.The relative error criterion only involves one parameter,which is more implementable.We establish the global convergence and sub-linear convergence rate in ergodic sense for the proposed algorithms.The numerical experiments on LASSO regression problems and total variation-based image denoising problem illustrate that our new algorithms outperform the corresponding exact algorithms.展开更多
基金This research is supported by the National Natural Science Foundation of China under Grant No.10771050
文摘K. Nakajo and W. Takahashi in 2003 proved the strong convergence theorems for nonex-pansive mappings, nonexpansive semigroups, and proximal point algorithm for zero point of monotone operators in Hilbert spaces by using the hybrid method in mathematical programming. The purpose of this paper is to modify the hybrid iteration method of K. Nakajo and W. Takahashi through the monotone hybrid method, and to prove strong convergence theorems. The convergence rate of iteration process of the monotone hybrid method is faster than that of the iteration process of the hybrid method of K. Nakajo and W. Takahashi. In the proofs in this article, Cauchy sequence method is used to avoid the use of the demiclosedness principle and Opial's condition.
基金the National Natural Science Foundation of China(Nos.11971238 and 11871279)。
文摘Proximal point algorithm(PPA)is a useful algorithm framework and has good convergence properties.Themain difficulty is that the subproblems usually only have iterative solutions.In this paper,we propose an inexact customized PPA framework for twoblock separable convex optimization problem with linear constraint.We design two types of inexact error criteria for the subproblems.The first one is absolutely summable error criterion,under which both subproblems can be solved inexactly.When one of the two subproblems is easily solved,we propose another novel error criterion which is easier to implement,namely relative error criterion.The relative error criterion only involves one parameter,which is more implementable.We establish the global convergence and sub-linear convergence rate in ergodic sense for the proposed algorithms.The numerical experiments on LASSO regression problems and total variation-based image denoising problem illustrate that our new algorithms outperform the corresponding exact algorithms.