随着人工智能和无人驾驶等相关学科的快速发展,煤矿装备的智能化和无人化成为了新的趋势。智能设备的应用将大幅提高煤矿作业的生产力以及人员安全性。露天煤矿地形复杂,与城市环境相比无明显的几何特征,具有分段相似性,利用现有以激光...随着人工智能和无人驾驶等相关学科的快速发展,煤矿装备的智能化和无人化成为了新的趋势。智能设备的应用将大幅提高煤矿作业的生产力以及人员安全性。露天煤矿地形复杂,与城市环境相比无明显的几何特征,具有分段相似性,利用现有以激光雷达为主的同时定位与建图(Simultaneous Localization and Mapping,SLAM)方案在该环境下易出现定位漂移和建图误差较大等现象。针对上述问题,提出了一种基于激光雷达(Light Detection and Ranging,LiDAR)和惯导(Inertial Measurement Unit,IMU)紧耦合的SLAM算法,该算法使用LiDAR和IMU两种传感器作为数据输入,对数据进行预处理,前端利用迭代扩展卡尔曼滤波器将预处理后的LiDAR特征点与IMU数据相融合,并使用后向传播来矫正雷达运动畸变,后端利用雷达相对位姿因子将LiDAR帧间配准结果作为约束因子与回环因子共同完成全局因子图优化。利用开源数据集和露天煤矿实地数据集验证了算法的鲁棒性和精确性。试验结果表明在城市结构化环境中文中所提算法与当前激光SLAM算法精度保持一致,而针对长达两千多米的露天煤矿实地环境,所提算法较FAST-LIO2、LIO-SAM紧耦合算法在定位精度上分别提高了46.00%和23.15%,且具有更高的鲁棒性。展开更多
For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand....For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.展开更多
文摘随着人工智能和无人驾驶等相关学科的快速发展,煤矿装备的智能化和无人化成为了新的趋势。智能设备的应用将大幅提高煤矿作业的生产力以及人员安全性。露天煤矿地形复杂,与城市环境相比无明显的几何特征,具有分段相似性,利用现有以激光雷达为主的同时定位与建图(Simultaneous Localization and Mapping,SLAM)方案在该环境下易出现定位漂移和建图误差较大等现象。针对上述问题,提出了一种基于激光雷达(Light Detection and Ranging,LiDAR)和惯导(Inertial Measurement Unit,IMU)紧耦合的SLAM算法,该算法使用LiDAR和IMU两种传感器作为数据输入,对数据进行预处理,前端利用迭代扩展卡尔曼滤波器将预处理后的LiDAR特征点与IMU数据相融合,并使用后向传播来矫正雷达运动畸变,后端利用雷达相对位姿因子将LiDAR帧间配准结果作为约束因子与回环因子共同完成全局因子图优化。利用开源数据集和露天煤矿实地数据集验证了算法的鲁棒性和精确性。试验结果表明在城市结构化环境中文中所提算法与当前激光SLAM算法精度保持一致,而针对长达两千多米的露天煤矿实地环境,所提算法较FAST-LIO2、LIO-SAM紧耦合算法在定位精度上分别提高了46.00%和23.15%,且具有更高的鲁棒性。
基金funded by the project scheme of the Publication Writing-IPR Incentive Program(PPHKI)2022Directorate of Research and Community Service(DRPM)Institut Teknologi Sepuluh Nopember(ITS)Surabaya,Indonesia for the financial supports。
文摘For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.