期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Accelerated Matrix Recovery via Random Projection Based on Inexact Augmented Lagrange Multiplier Method 被引量:4
1
作者 王萍 张楚涵 +1 位作者 蔡思佳 李林昊 《Transactions of Tianjin University》 EI CAS 2013年第4期293-299,共7页
In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by ad... In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000. 展开更多
关键词 matrix recovery random projection robust principal component analysis matrix completion outlier pursuit inexact augmented lagrange multiplier method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部