Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact.In some practical problems,we can only obtain approximate values of the objective function and i...Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact.In some practical problems,we can only obtain approximate values of the objective function and its gradient.It is necessary to design optimization algorithms that can utilize inexact first-order information.In this paper,we propose an adaptive regularized quasi-Newton method to solve such problems.Under some mild conditions,we prove the global convergence and establish the convergence rate of the adaptive regularized quasi-Newton method.Detailed implementations of our method,including the subspace technique to reduce the amount of computation,are presented.Encouraging numerical results demonstrate that the adaptive regularized quasi-Newton method is a promising method,which can utilize the inexact first-order information effectively.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.NSFC-11971118).
文摘Classical quasi-Newton methods are widely used to solve nonlinear problems in which the first-order information is exact.In some practical problems,we can only obtain approximate values of the objective function and its gradient.It is necessary to design optimization algorithms that can utilize inexact first-order information.In this paper,we propose an adaptive regularized quasi-Newton method to solve such problems.Under some mild conditions,we prove the global convergence and establish the convergence rate of the adaptive regularized quasi-Newton method.Detailed implementations of our method,including the subspace technique to reduce the amount of computation,are presented.Encouraging numerical results demonstrate that the adaptive regularized quasi-Newton method is a promising method,which can utilize the inexact first-order information effectively.