A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated b...A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated by C-1-Pk-1polynomial vectors,for all k 4.The main ingredients for the analysis are a new basis of the space of symmetric matrices,an intrinsic H(div)bubble function space on each element,and a new technique for establishing the discrete inf-sup condition.In particular,they enable us to prove that the divergence space of the H(div)bubble function space is identical to the orthogonal complement space of the rigid motion space with respect to the vector-valued Pk-1polynomial space on each tetrahedron.The optimal error estimate is proved,verified by numerical examples.展开更多
This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quas...This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11271035,91430213 and 11421101)
文摘A family of stable mixed finite elements for the linear elasticity on tetrahedral grids are constructed,where the stress is approximated by symmetric H(div)-Pk polynomial tensors and the displacement is approximated by C-1-Pk-1polynomial vectors,for all k 4.The main ingredients for the analysis are a new basis of the space of symmetric matrices,an intrinsic H(div)bubble function space on each element,and a new technique for establishing the discrete inf-sup condition.In particular,they enable us to prove that the divergence space of the H(div)bubble function space is identical to the orthogonal complement space of the rigid motion space with respect to the vector-valued Pk-1polynomial space on each tetrahedron.The optimal error estimate is proved,verified by numerical examples.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171219,11161130004)E-Institutes of Shanghai Municipal Education Commission(Grant No. E03004)+1 种基金supported by Shanghai Leading Discipline Project(Grant No. N.S30405)Shanghai Normal University Research Program (Grant No. SK201202)
文摘This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.