期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Airfoil Shape Optimisation Using a Multi-Fidelity Surrogate-Assisted Metaheuristic with a New Multi-Objective Infill Sampling Technique
1
作者 Cho Mar Aye Kittinan Wansaseub +4 位作者 Sumit Kumar Ghanshyam G.Tejani Sujin Bureerat Ali R.Yildiz Nantiwat Pholdee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2111-2128,共18页
This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization.The optimization problem is posed to maximize the lift and drag coefficient ratio subjec... This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization.The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints.Computational Fluid Dynamic(CFD)and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value.A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed.To validate and further assess the proposed methods,a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied with multi-fidelity simulation,while their numerical performance is investigated.The results obtained show that the proposed technique is the best performer for the demonstrated airfoil shape optimization.According to this study,applying multi-fidelity with multi-objective infill sampling criteria for surrogate-assisted optimization is a powerful design tool. 展开更多
关键词 Multi-fidelity modelling differential evolution KRIGING infill sampling criteria metaheuristics
下载PDF
Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape 被引量:1
2
作者 Zhiyuan Dai Tian Li +1 位作者 Weihua Zhang Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1461-1489,共29页
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o... The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model. 展开更多
关键词 High-speed train multi-objective optimization PARAMETERIZATION optimization algorithm surrogate model sample infill criterion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部