Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous ...Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.展开更多
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-be...This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.展开更多
In this paper, we present a two-dimensional numerical analysis of the conjugate natural convection and radiation heat transfer in a double-space enclosure with two semitransparent walls. Two kinds of boundary conditio...In this paper, we present a two-dimensional numerical analysis of the conjugate natural convection and radiation heat transfer in a double-space enclosure with two semitransparent walls. Two kinds of boundary conditions are considered, the rst being the isothermal process of the opaque wall, and the other the incidence of a constant radiation ux in the left semitransparent wall. The renormalization group k ε model is adopted to simulate the turbulent ow in the enclosure. To compute the radia- tion heat transfer in a semitransparent medium, the discrete ordinates model is used. We compare the behaviors of enclosures with single and double semitransparent walls and determine the di erence in the results obtained for semitransparent and opaque partitions. The results indicate that a semitransparent partition facilitates a reduction in the heat loss or obtains a higher temperature distribution. The transmittance of a semitransparent wall has a great e ect on the thermal and ow char- acteristics in an enclosure. The change of wall temperature is found to be signi cant when the thermal conductivity values range from 0.05 to 0.5 W/(m K), and to be small when ranging from 0.5 to 10 W/(m K). These conclusions are helpful for green design and energy saving in solar buildings.展开更多
基金Natural Science Foundation of China under Grant Nos.51178342 and 51578314
文摘Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism.This damage mode results in poor ductility and limited energy dissipation.Continuous components offer alternatives that may avoid such failures.A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics.Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used.However,a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported.In this study,a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing.Critical joints were designed and verified.Numerical models were established and calibrated to estimate frame shear forces.The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms.Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall.Drift distribution becomes more uniform with height.Concrete cracks and damage occurs in desired areas.The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
文摘This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.
基金supported by the Shanghai Economic and Information Technology Committee Special Fund (CXY-2016-012)
文摘In this paper, we present a two-dimensional numerical analysis of the conjugate natural convection and radiation heat transfer in a double-space enclosure with two semitransparent walls. Two kinds of boundary conditions are considered, the rst being the isothermal process of the opaque wall, and the other the incidence of a constant radiation ux in the left semitransparent wall. The renormalization group k ε model is adopted to simulate the turbulent ow in the enclosure. To compute the radia- tion heat transfer in a semitransparent medium, the discrete ordinates model is used. We compare the behaviors of enclosures with single and double semitransparent walls and determine the di erence in the results obtained for semitransparent and opaque partitions. The results indicate that a semitransparent partition facilitates a reduction in the heat loss or obtains a higher temperature distribution. The transmittance of a semitransparent wall has a great e ect on the thermal and ow char- acteristics in an enclosure. The change of wall temperature is found to be signi cant when the thermal conductivity values range from 0.05 to 0.5 W/(m K), and to be small when ranging from 0.5 to 10 W/(m K). These conclusions are helpful for green design and energy saving in solar buildings.