In this paper, by using characterization of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H, a necessary and sufficient condition is obtained on the symmetry of σP(A) and σ1/...In this paper, by using characterization of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H, a necessary and sufficient condition is obtained on the symmetry of σP(A) and σ1/P(-A^*) with respect to the imaginary axis. Then the symmetry of the point spectrum of H is given, and several examples are presented to illustrate the results.展开更多
This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H)...This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H) = σp (A) U σp1 (-A*). Using the characteristic of the set σp1(-A*), we divide the point spectrum σp (d) of A into three disjoint parts. Then, a necessary and sufficient condition is obtained under which σp1(-A*) and one part of σp(A) are symmetric with respect to the real axis each other. Based on this result, the symmetry of σp(H) is completely given. Moreover, the above result is applied to thin plates on elastic foundation, plane elasticity problems and harmonic equations.展开更多
This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all...This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all symmetric with respect to the imaginary axis of the complex plane. Moreover,it is proved that the residual spectrum does not contain any pair of points symmetric with respect to the imaginary axis;and a complete characterization of the residual spectrum in terms of the point spectrum is then given.As applications of these structure results,we obtain several necessary and sufficient conditions for the residual spectrum of a class of infinite dimensional Hamiltonian operators to be empty.展开更多
基金Foundation item: the National Natural Science Foundation of China (No. 10562002) the Natural Science Foundation of Inner Mongolia (Nos. 200508010103+2 种基金 200711020106) the Specialized Research Fund of the Doctoral Program of Higher Education of China (No. 20070126002) Research Foundation for Talented Scholars of Inner Mongolia University (No. 206029).
文摘In this paper, by using characterization of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H, a necessary and sufficient condition is obtained on the symmetry of σP(A) and σ1/P(-A^*) with respect to the imaginary axis. Then the symmetry of the point spectrum of H is given, and several examples are presented to illustrate the results.
基金Supported by the National Natural Science Foundation of China (No. 11061019, 10962004, 11101200)the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)+1 种基金the Natural Science Foundation of Inner Mongolia (No. 2010MS0110, 2009BS0101)the Cultivation of Innovative Talent of ‘211 Project’ of Inner Mongolia University
文摘This paper studies the symmetry, with respect to the real axis, of the point spectrum of the upper triangular infinite dimensional Hamiltonian operator H. Note that the point spectrum of H can be described as σp(H) = σp (A) U σp1 (-A*). Using the characteristic of the set σp1(-A*), we divide the point spectrum σp (d) of A into three disjoint parts. Then, a necessary and sufficient condition is obtained under which σp1(-A*) and one part of σp(A) are symmetric with respect to the real axis each other. Based on this result, the symmetry of σp(H) is completely given. Moreover, the above result is applied to thin plates on elastic foundation, plane elasticity problems and harmonic equations.
基金the National Natural Science Foundation of China (Grant No.10562002) the Natural Science Foundation of Inner Mongolia (Grant Nos.200508010103,200711020106)
文摘This paper deals with the structure of the spectrum of infinite dimensional Hamiltonian operators.It is shown that the spectrum,the union of the point spectrum and residual spectrum,and the continuous spectrum are all symmetric with respect to the imaginary axis of the complex plane. Moreover,it is proved that the residual spectrum does not contain any pair of points symmetric with respect to the imaginary axis;and a complete characterization of the residual spectrum in terms of the point spectrum is then given.As applications of these structure results,we obtain several necessary and sufficient conditions for the residual spectrum of a class of infinite dimensional Hamiltonian operators to be empty.