A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element metho...A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The botmdary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos .50709005 ,50639030 and 10772040)the National High Technology Research and Development Program of China (Grant No.2006AA09A109-3) UK EPSRC(Grant Nos . GR/T07220/01 and GR/T07220/02)
文摘A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The botmdary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.