Firstly, in the general normed linear space, the concepts of generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, generalized Roberts orthogonal group, strong Birkhoff orthogonal group and ge...Firstly, in the general normed linear space, the concepts of generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, generalized Roberts orthogonal group, strong Birkhoff orthogonal group and generalized orthogonal basis are introduced. Secondly, the conclusion that any two nonzero generalized orthogonal groups must be linearly independent group is proven. And the existence of nonzero generalized orthogonal group and its linear correlation are discussed preliminarily, as well as some related properties of nonempty generalized orthogonal group in specific normed linear space namely the <em>l<sub>p</sub></em> space.展开更多
Some results from the theory of best (or best simultaneous) approximation in a narmed linear space have been extended to a normed almost linear space [strong normed almost linear space].
Since the PN space (E, F) which satisfies condition (PN-5) is just a Menger PN-space (E, F, min), the results with regard to probabilistic norms of linear operators on PN-spaces obtained by Xiao Jianzhong have bigger ...Since the PN space (E, F) which satisfies condition (PN-5) is just a Menger PN-space (E, F, min), the results with regard to probabilistic norms of linear operators on PN-spaces obtained by Xiao Jianzhong have bigger limitations. In this paper, problems respecting probabilistic norms of linear operators and spaces of operators are studied on more general Menger PN-spaces. The results presented improve and generalize the corresponding results by Xiao.展开更多
In [1],a family of angles are defined in normed linear spaces. In this paper,it is shown that if anyone of the angles satisfies certain euclidean triangle congruence properties,the space must be an inner product space.
In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators se...In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators sequence are determined on the Wiener space.展开更多
Ishikawa iterative sequences with errors different from the iterative sequences introduced by Liu and Xu are given. Moreover, the problem of approximating the fixed points of (ψ)-hemicontractive mapping in normed l...Ishikawa iterative sequences with errors different from the iterative sequences introduced by Liu and Xu are given. Moreover, the problem of approximating the fixed points of (ψ)-hemicontractive mapping in normed linear spaces by the modified Ishikawa iterative sequences with errors is investigated. The results presented in this paper improve and extend the results of the others.展开更多
In general normed spaces, we consider a multiobjective piecewise linear optimization problem with the ordering cone being convex and having a nonempty interior. We establish that the weak Pareto optimal solution set o...In general normed spaces, we consider a multiobjective piecewise linear optimization problem with the ordering cone being convex and having a nonempty interior. We establish that the weak Pareto optimal solution set of such a problem is the union of finitely many polyhedra and that this set is also arcwise connected under the cone convexity assumption of the objective function. Moreover, we provide necessary and sufficient conditions about the existence of weak (sharp) Pareto solutions.展开更多
We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discus...We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.展开更多
文摘Firstly, in the general normed linear space, the concepts of generalized isosceles orthogonal group, generalized Birkhoff orthogonal group, generalized Roberts orthogonal group, strong Birkhoff orthogonal group and generalized orthogonal basis are introduced. Secondly, the conclusion that any two nonzero generalized orthogonal groups must be linearly independent group is proven. And the existence of nonzero generalized orthogonal group and its linear correlation are discussed preliminarily, as well as some related properties of nonempty generalized orthogonal group in specific normed linear space namely the <em>l<sub>p</sub></em> space.
文摘Some results from the theory of best (or best simultaneous) approximation in a narmed linear space have been extended to a normed almost linear space [strong normed almost linear space].
文摘Since the PN space (E, F) which satisfies condition (PN-5) is just a Menger PN-space (E, F, min), the results with regard to probabilistic norms of linear operators on PN-spaces obtained by Xiao Jianzhong have bigger limitations. In this paper, problems respecting probabilistic norms of linear operators and spaces of operators are studied on more general Menger PN-spaces. The results presented improve and generalize the corresponding results by Xiao.
文摘In [1],a family of angles are defined in normed linear spaces. In this paper,it is shown that if anyone of the angles satisfies certain euclidean triangle congruence properties,the space must be an inner product space.
文摘In this paper, we discuss the average errors of function approximation by linear combinations of Bernstein operators. The strongly asymptotic orders for the average errors of the combinations of Bernstein operators sequence are determined on the Wiener space.
文摘Ishikawa iterative sequences with errors different from the iterative sequences introduced by Liu and Xu are given. Moreover, the problem of approximating the fixed points of (ψ)-hemicontractive mapping in normed linear spaces by the modified Ishikawa iterative sequences with errors is investigated. The results presented in this paper improve and extend the results of the others.
基金supported by the National Natural Science Foundation of China (Grant No. 10761012)theNatural Science Foundation of Yunnan Province,China (Grant No. 2003A002M) the Research GrantsCouncil of Hong Kong (Grant No. B-Q771)
文摘In general normed spaces, we consider a multiobjective piecewise linear optimization problem with the ordering cone being convex and having a nonempty interior. We establish that the weak Pareto optimal solution set of such a problem is the union of finitely many polyhedra and that this set is also arcwise connected under the cone convexity assumption of the objective function. Moreover, we provide necessary and sufficient conditions about the existence of weak (sharp) Pareto solutions.
文摘We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.
基金Supported by the National Natural Science Foundation of China (1 0 0 71 0 63 )the Founda-tion for University Key Teachers by the Ministry of Education of China