After introducing the supply chain default risk and its causes,based on the literature review of the evaluation methods of supply chain risks,a new evaluation method called the fuzzy influence diagram which combines f...After introducing the supply chain default risk and its causes,based on the literature review of the evaluation methods of supply chain risks,a new evaluation method called the fuzzy influence diagram which combines fuzzy sets with influence diagram theory and considers the interaction among risk factors is proposed.Furthermore,an evaluation model of the supply chain default risk is established based on the research of default risk evaluation and the fuzzy influence diagram.First,the model takes the loss of risk as a valuable node,risk factors as random nodes,drawing a risk analysis influence diagram.Then,three kinds of fuzzy sets are defined,including state fuzzy sets,probabilistic fuzzy sets and a relation fuzzy matrix.Finally,by using the fuzzy algorithm to evaluate nodes,the probability of risk occurrence and the degrees of risk loss are obtained.On the basis of the model,an instance application is used to prove its utility and effectiveness.展开更多
A risk assessment method for marine configuration based on Fuzzy Probability Influence Diagram (FPID) and Failure Mode and Effect Analysis (FMEA) is established in this paper. Considering the fuzzy characteristic ...A risk assessment method for marine configuration based on Fuzzy Probability Influence Diagram (FPID) and Failure Mode and Effect Analysis (FMEA) is established in this paper. Considering the fuzzy characteristic of the two key inputs such as event happening probability and relation probability, the method induces fuzzy probability into the PID risk assessment for marine configuration, where defuzzification is performed using the centroid method to determine the risk at a given grade of a probabilistic item. FMEA as a traditional qualitative analysis method is used to determine the effect factor structure. An application of the presented method for the offshore jacket platform is implemented. The method can be widely applicable although only offshore platform is analyzed here.展开更多
Supported by research available of township system and influential sphere, the research is conducted based on towns in Bijie City, as per Voronoi diagram and breaking point theory. In the research, Shixi Office domina...Supported by research available of township system and influential sphere, the research is conducted based on towns in Bijie City, as per Voronoi diagram and breaking point theory. In the research, Shixi Office dominated as the highest center and Salaxi Town and Haizijie Town were sub-centers, supplemented by Yachi Town, Zhuchang Town, Yangjiawan Town, Qingchang Town, Heguantun Town, Qingshuipu Town, Yanzikou Town and Longchangying Town. Hence, township system and influ- ential sphere were determined and related methods and technologies were explored.展开更多
A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision pr...A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision process, and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under uncertain conditions. Considering an active opponent, the opponent's maneuvers can be modeled stochastically. The solution of multistage influence diagram can be obtained by converting the multistage influence diagram into a two-level optimization problem. The simulation results show the model is effective.展开更多
System of systems architecture(SoSA) has received increasing emphasis by scholars since Zachman ignited its flame in 1987. Given its complexity and abstractness, it is critical to validate and evaluate SoSA to ensur...System of systems architecture(SoSA) has received increasing emphasis by scholars since Zachman ignited its flame in 1987. Given its complexity and abstractness, it is critical to validate and evaluate SoSA to ensure requirements have been met.Multiple qualities are discussed in the literature of SoSA evaluation, while research on functionality is scarce. In order to assess SoSA functionality, an extended influence diagram(EID) is developed in this paper. Meanwhile, a simulation method is proposed to elicit the conditional probabilities in EID through designing and executing SoSA. An illustrative anti-missile architecture case is introduced for EID development, architecture design, and simulation.展开更多
In decision modeling with influence diagrams, the most challenging task is probability elicitation from domain experts. It is usually very difficult for experts to directly assign precise probabilities to chance nodes...In decision modeling with influence diagrams, the most challenging task is probability elicitation from domain experts. It is usually very difficult for experts to directly assign precise probabilities to chance nodes. In this paper, we propose an approach to elicit probability effectively by using the concept of interval probability (IP). During the elicitation process, a group of experts assign intervals to probabilities instead of assigning exact values. Then the intervals are combined and converted into the point valued probabilities. The detailed steps of the elicitation process are given and illustrated by constructing the influence diagram for employee recruitment decision for a China’s IT Company. The proposed approach provides a convenient and comfortable way for experts to assess probabilities. It is useful in influence diagrams modeling as well as in other subjective probability elicitation situations.展开更多
The evaluation algorithm and the application of the influence diagram were surveyed, which argues that to construct an explicit, compact and objective influence diagram is of the most importance. There are two suggest...The evaluation algorithm and the application of the influence diagram were surveyed, which argues that to construct an explicit, compact and objective influence diagram is of the most importance. There are two suggested ways for realization of the influence diagram: introducing the achievements of the modern psychology, cognitive science, behavior science, and so on to represent and solve uncertainty to build a well-constructed influence diagram; based on the observed data to build an influence diagram. Also, the limitations of the influence diagram were analyzed, such as that it cannot deal with asymmetric problems efficiently, cannot picture dynamic problems, cannot model the problems with a limitless horizon, and ther is no highly efficient algorithm. And some potential methods to overcome these limitations were pointed out.展开更多
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘After introducing the supply chain default risk and its causes,based on the literature review of the evaluation methods of supply chain risks,a new evaluation method called the fuzzy influence diagram which combines fuzzy sets with influence diagram theory and considers the interaction among risk factors is proposed.Furthermore,an evaluation model of the supply chain default risk is established based on the research of default risk evaluation and the fuzzy influence diagram.First,the model takes the loss of risk as a valuable node,risk factors as random nodes,drawing a risk analysis influence diagram.Then,three kinds of fuzzy sets are defined,including state fuzzy sets,probabilistic fuzzy sets and a relation fuzzy matrix.Finally,by using the fuzzy algorithm to evaluate nodes,the probability of risk occurrence and the degrees of risk loss are obtained.On the basis of the model,an instance application is used to prove its utility and effectiveness.
文摘A risk assessment method for marine configuration based on Fuzzy Probability Influence Diagram (FPID) and Failure Mode and Effect Analysis (FMEA) is established in this paper. Considering the fuzzy characteristic of the two key inputs such as event happening probability and relation probability, the method induces fuzzy probability into the PID risk assessment for marine configuration, where defuzzification is performed using the centroid method to determine the risk at a given grade of a probabilistic item. FMEA as a traditional qualitative analysis method is used to determine the effect factor structure. An application of the presented method for the offshore jacket platform is implemented. The method can be widely applicable although only offshore platform is analyzed here.
基金Supported by General Plan of Bijie Land Use ([2009]XY1015)~~
文摘Supported by research available of township system and influential sphere, the research is conducted based on towns in Bijie City, as per Voronoi diagram and breaking point theory. In the research, Shixi Office dominated as the highest center and Salaxi Town and Haizijie Town were sub-centers, supplemented by Yachi Town, Zhuchang Town, Yangjiawan Town, Qingchang Town, Heguantun Town, Qingshuipu Town, Yanzikou Town and Longchangying Town. Hence, township system and influ- ential sphere were determined and related methods and technologies were explored.
文摘A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat. The model based on the multi-stage influence diagram graphically describes the elements of decision process, and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's preferences under uncertain conditions. Considering an active opponent, the opponent's maneuvers can be modeled stochastically. The solution of multistage influence diagram can be obtained by converting the multistage influence diagram into a two-level optimization problem. The simulation results show the model is effective.
基金supported by the National Natural Science Foundation of China(71571189)
文摘System of systems architecture(SoSA) has received increasing emphasis by scholars since Zachman ignited its flame in 1987. Given its complexity and abstractness, it is critical to validate and evaluate SoSA to ensure requirements have been met.Multiple qualities are discussed in the literature of SoSA evaluation, while research on functionality is scarce. In order to assess SoSA functionality, an extended influence diagram(EID) is developed in this paper. Meanwhile, a simulation method is proposed to elicit the conditional probabilities in EID through designing and executing SoSA. An illustrative anti-missile architecture case is introduced for EID development, architecture design, and simulation.
文摘In decision modeling with influence diagrams, the most challenging task is probability elicitation from domain experts. It is usually very difficult for experts to directly assign precise probabilities to chance nodes. In this paper, we propose an approach to elicit probability effectively by using the concept of interval probability (IP). During the elicitation process, a group of experts assign intervals to probabilities instead of assigning exact values. Then the intervals are combined and converted into the point valued probabilities. The detailed steps of the elicitation process are given and illustrated by constructing the influence diagram for employee recruitment decision for a China’s IT Company. The proposed approach provides a convenient and comfortable way for experts to assess probabilities. It is useful in influence diagrams modeling as well as in other subjective probability elicitation situations.
基金NationalScienceFoundationofChina (No .70 2 72 0 0 2 )
文摘The evaluation algorithm and the application of the influence diagram were surveyed, which argues that to construct an explicit, compact and objective influence diagram is of the most importance. There are two suggested ways for realization of the influence diagram: introducing the achievements of the modern psychology, cognitive science, behavior science, and so on to represent and solve uncertainty to build a well-constructed influence diagram; based on the observed data to build an influence diagram. Also, the limitations of the influence diagram were analyzed, such as that it cannot deal with asymmetric problems efficiently, cannot picture dynamic problems, cannot model the problems with a limitless horizon, and ther is no highly efficient algorithm. And some potential methods to overcome these limitations were pointed out.