Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and inf...Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.展开更多
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system r...Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.展开更多
[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dos...[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus.展开更多
In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient o...In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.展开更多
To establish a standard system for geneticstudies on sheath blight resistance, a field testwas conducted at the experimental farm ofYangzhou University to compare several pro-cedures for inoculating rice plants with R...To establish a standard system for geneticstudies on sheath blight resistance, a field testwas conducted at the experimental farm ofYangzhou University to compare several pro-cedures for inoculating rice plants with R.solani Kuhn (RH9). The varieties used wereJasmine 85, Teqing (resistant or moderatelyresistant), and Lemont (susceptible). They展开更多
In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influen...In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.展开更多
Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS in...Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.展开更多
A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was ...A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.展开更多
In vitro experiment using excised skin has been valuable for studying the mechanism of percutaneous absorption. Based on previously established static diffusion cell system in this laboratory, a novel model-peifused g...In vitro experiment using excised skin has been valuable for studying the mechanism of percutaneous absorption. Based on previously established static diffusion cell system in this laboratory, a novel model-peifused glass diffusion cell system is desboed. The results of initial comporative study on percutaneous absorption between glass perfused diffusion cell and static diffusion cell, ih vitro and in vivo permeation as well as factors affecting permeation with seven radiolabelled chemicals are presented. The results demonstrate that the peifused diffusion cell system, which used a perfusion nuid betow the suiface of skin to take up the materials which penetrated the skin, is more similar to physiologic condition,convenient and automatic than that of the static cell. It well predicts the in vivo percutaneous absorption if appropriate areptor fluid is chosen. The results also show that the selection of receptor fluid is critical for in vitro permeation of chemicals with different soubility展开更多
During the Folin Ciocalteu (F-C) micro-assay for the determination of phenolics in the presence of methanol, fine solids can form. In a previous paper, we hypothesized that the interference from alcohol on the F-C rea...During the Folin Ciocalteu (F-C) micro-assay for the determination of phenolics in the presence of methanol, fine solids can form. In a previous paper, we hypothesized that the interference from alcohol on the F-C reaction can be minimized depending on the particular procedure used to reach the alkalinity condition. In order to demonstrate our hypothesis we studied, by spectrophotometrically monitoring, the time-behaviour of the reactions carried out in the presence of different methanol concentrations at the same alkalinity condition from two protocols. The results showed that the interfering effect of methanol on the F-C micro-method can be affect and even prevented depending on working conditions. In particular, the formation of fine solids can be delayed, slowed down and prevented depending on the initial carbonate concentration used. We have explained why the initial carbonate concentration, used to reach the final alkalinity condition, plays an important role in the F-C reaction carried out in the presence of methanol. Moreover, the results from real-time monitoring showed that, differently from traditional F-C procedure, our procedure allows us to carry out the F-C micro method in the presence of 6% methanol, as an extreme concentration, reading the absorbance at real time 24 min. The real-time monitoring of absorbance can be considered as a useful means to explore the effect of other parameters on precipitate formation caused by the presence of methanol in the F-C reaction.展开更多
In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because ...In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.展开更多
Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate ...Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints.展开更多
To clarify the importance of various influencing factors on asphalt pavement rutting deformation and determine a screening method of model indicators,the data of the RIOHTrack full-scale track were examined using the ...To clarify the importance of various influencing factors on asphalt pavement rutting deformation and determine a screening method of model indicators,the data of the RIOHTrack full-scale track were examined using the factor analysis method(FAM).Taking the standard test pavement structure of RIOHTrack as an example,four rutting influencing factors from different aspects were determined through statistical analysis.Furthermore,the common influencing factors among the rutting influencing factors were studied based on FAM.Results show that the common factor can well characterize accumulative ESALs,center-point deflection,and temperature,besides humidity,which indicates that these three influencing factors can have an important impact on rutting.Moreover,an empirical rutting prediction model was established based on the selected influencing factors,which proved to exhibit high prediction accuracy.These analysis results demonstrate that the FAM is an effective screening method for rutting prediction model indicators,which provides a reference for the selection of independent model indicators in other rutting prediction model research when used in other areas and is of great significance for the prediction and control of rutting distress.展开更多
Based on the analysis of the grain supply and demand gap’s current situation in China, this paper establishes an indicator system for the influence factors of grain supply and demand gap. Then this paper calculates t...Based on the analysis of the grain supply and demand gap’s current situation in China, this paper establishes an indicator system for the influence factors of grain supply and demand gap. Then this paper calculates the correlation degree between the main grain varieties’ supply and demand gap and its influence factors. The results show that sown area and unit yield have the greatest impact on wheat supply and demand gap;per capita disposable income and unit yield have the greatest impact on corn supply and demand gap;per capita disposable income and agricultural mechanization level have the greatest impact on the supply and demand gap of soybean and rice. From the analysis results, we can obtain the difference between the factors affecting the grain supply and demand gap, and provide a certain theoretical basis and new ideas for the balance of grain supply and demand in China.展开更多
Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of ...Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of coal roadway under the influence of mining is established,and the calculating formulas of reliability of the support structure is obtained with the engineering structure reliability theory. And the reliability is calculated based on the method of Monte Carlo to the coal roadway which is exampled on the influence of mining or not. The relationship between support parameters and reliability, the mining influence coefficients and reliability is established, which provides theory foundations for the design of the coal roadway bolt support.展开更多
The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, i...The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.展开更多
The error of gaugemeter equation decreases the gap setting precision.The precision of gaugemeter equation is strongly influenced by plate width,work roll radius,backup roll radius,work roll crown,backup roll crown and...The error of gaugemeter equation decreases the gap setting precision.The precision of gaugemeter equation is strongly influenced by plate width,work roll radius,backup roll radius,work roll crown,backup roll crown and rolling force.And these influences are hard to measure.All these factors are converted to roll deflection deformation and roll flattening deformation for calculation.In order to calculate the deformation,the theory of influence function method was adopted.By using simulation program,the influence of these factors on deformation was obtained.Then a simple model can be built.With this model,it is convenient to analyze the influence of different factors on gaugemeter equation.展开更多
Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction...Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction of ground deformation in many countries is Knothe model.The model developed by Knothe belongs to the stochastic methods and is based on the influence function.In China a prediction method named Probability Integration Method(PIF)was established by Liu Baochen and Liao Guohua based on the stochastic medium theory.Modified version of that model allows to predict ground movements caused by mining operation in extremely complex technical and geological conditions.That model is commonly applied for coal,metal ore and salt deposits.The article presents several modifications of the mathematical model used in China and Poland.This model is very widespread in the world,therefore the generalizations proposed in the article can be implemented for the purposes of prediction surface deformations for various types of deposits in many countries.The presented generalizations were then tested on specific examples of coal mining,copper ore mining and rock salt deposit.The obtained results indicate high efficiency of methods based on the influence function in complex geological and mining conditions.展开更多
基金Projects(51478049,51778068)supported by the National Natural Science Foundation of ChinaProject(14JJ2075,2019JJ40301)supported by the Hunan Natural Science Foundation of China+1 种基金Project(17A010)supported by the Scientific Research Fund of Hunan Provincial Education Department of ChinaProject(2017GK4034)supported by the Major Technological Achievements Transformation Program of Hunan Strategic Emerging Industries of China
文摘Cantilever casting concrete arch bridge using form traveller has a broad application prospect.However,it is difficult to obtain reasonable initial cable force in construction stage.In this study,stress balance and influence matrix methods were developed to determine the initial cable force of cantilever casting concrete arch bridge.The stress balance equation and influence matrix of arch rib critical section were established,and the buckle cable force range was determined by the allowable stress of arch rib critical section.Then a group of buckle cable forces were selected and substituted into the stress balance equation,and the reasonable initial buckle cable force was determined through iteration.Based on the principle of force balance,the initial anchor cable force was determined.In an engineering application example,it is shown that the stress balance and influence matrix methods for the determination of initial cable force are feasible and reliable.The initial cable forces of arch rib segments only need to be adjusted once in the corresponding construction process,which improves the working efficiency and reduces the construction risk.It is found that the methods have great advantages for determining initial cable force in cantilever casting construction process of concrete arch bridge.
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金Project(51078170) supported by the National Natural Science Foundation of ChinaProject(10JDG097) supported by Jiangsu University Talents Funds,China
文摘Complex slopes are characterized by large numbers of failure modes,cut sets or link sets,or by statistical dependence between the failure modes.For such slopes,a systematic quantitative method,or matrix-based system reliability method,was described and improved for their reliability analysis.A construction formula of event vector c E was suggested to solve the difficulty of identifying any component E in sample space,and event vector c of system events can be calculated based on it,then the bounds of system failure probability can be obtained with the given probability information.The improved method was illustrated for four copper mine slopes with multiple failure modes,and the bounds of system failure probabilities were calculated by self-compiling program on the platform of the software MATLAB.Comparison in results from matrix-based system reliability method and two generic system methods suggests that identical accuracy could be obtained by all methods if there are only a few failure modes in slope system.Otherwise,the bounds by the Ditlevsen method or Cornell method are expanded obviously with the increase of failure modes and their precision can hardly satisfy the requirement of practical engineering while the results from the proposed method are still accurate enough.
文摘[Objective] The research aimed to study influence factors of phosphorus removal by chemical method in sewage treatment system. [ Method] In different reaction systems, removal effect of the phosphorus in sewage by dosing lime and influence of the constraint factor were stud- ied. [ Result] Lime precipitation method treating high-concentration phosphorus wastewater could not only decline cost of phosphorus removal by chemical method, but also reach better treatment effect under suitable stirring and precipitation conditions by controlling alkalinity and pH. Phosphor- us content of chemical sludge after treatment could reach 9% -12%, with higher recyclable value. E Conclusion] Lime method treating phosphorus- rich sewage was more economic than low-concentration phosphorus sewage, and had very great potential for recycling phosphorus.
文摘In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.
文摘To establish a standard system for geneticstudies on sheath blight resistance, a field testwas conducted at the experimental farm ofYangzhou University to compare several pro-cedures for inoculating rice plants with R.solani Kuhn (RH9). The varieties used wereJasmine 85, Teqing (resistant or moderatelyresistant), and Lemont (susceptible). They
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175422)
文摘In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force.
文摘Based on the model structure of the influence coefficient method analyzed in depth by matrix theory ,it is explained the reason why the unreasonable and instable correction masses with bigger MSE are obtained by LS influence coefficient method when there are correlation planes in the dynamic balancing. It also presencd the new ridge regression method for solving correction masses according to the Tikhonov regularization theory, and described the reason why the ridge regression can eliminate the disadvantage of the LS method. Applying this new method to dynamic balancing of gas turbine, it is found that this method is superior to the LS method when influence coefficient matrix is ill-conditioned,the minimal correction masses and residual vibration are obtained in the dynamic balancing of rotors.
文摘A mathematical model based on influence function method was established to predict the surface movement and deformation due to underground mining, and the impact on the upper hydraulic facilities in one coal mine was analyzed used the model. The analysis indicates: the maximum surface subsidence reaches 3.5 m, and the predicted maximum horizontal surface deformation reaches 7.0 mm/m, which would result in crack, deformation and uneven settlement in the soil foundation of the upper hydraulic facilities and influence the quality directly. Therefore, reasonable engineering measurements should be adopted to ensure the safe operation.
文摘In vitro experiment using excised skin has been valuable for studying the mechanism of percutaneous absorption. Based on previously established static diffusion cell system in this laboratory, a novel model-peifused glass diffusion cell system is desboed. The results of initial comporative study on percutaneous absorption between glass perfused diffusion cell and static diffusion cell, ih vitro and in vivo permeation as well as factors affecting permeation with seven radiolabelled chemicals are presented. The results demonstrate that the peifused diffusion cell system, which used a perfusion nuid betow the suiface of skin to take up the materials which penetrated the skin, is more similar to physiologic condition,convenient and automatic than that of the static cell. It well predicts the in vivo percutaneous absorption if appropriate areptor fluid is chosen. The results also show that the selection of receptor fluid is critical for in vitro permeation of chemicals with different soubility
文摘During the Folin Ciocalteu (F-C) micro-assay for the determination of phenolics in the presence of methanol, fine solids can form. In a previous paper, we hypothesized that the interference from alcohol on the F-C reaction can be minimized depending on the particular procedure used to reach the alkalinity condition. In order to demonstrate our hypothesis we studied, by spectrophotometrically monitoring, the time-behaviour of the reactions carried out in the presence of different methanol concentrations at the same alkalinity condition from two protocols. The results showed that the interfering effect of methanol on the F-C micro-method can be affect and even prevented depending on working conditions. In particular, the formation of fine solids can be delayed, slowed down and prevented depending on the initial carbonate concentration used. We have explained why the initial carbonate concentration, used to reach the final alkalinity condition, plays an important role in the F-C reaction carried out in the presence of methanol. Moreover, the results from real-time monitoring showed that, differently from traditional F-C procedure, our procedure allows us to carry out the F-C micro method in the presence of 6% methanol, as an extreme concentration, reading the absorbance at real time 24 min. The real-time monitoring of absorbance can be considered as a useful means to explore the effect of other parameters on precipitate formation caused by the presence of methanol in the F-C reaction.
文摘In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.
基金the Beijing Municipal Scienceand Technology Project (No.KM202111417006)the Academic Research Projects of Beijing Union University (Nos.ZK10202305 and ZK80202004)the Beijing Municipal Science and Technology Project (No.KM202111417005)。
文摘Due to the diversity of work requirements and environment,the number of degrees of freedom(DOFs)and the complexity of structure of industrial robots are constantly increasing.It is difficult to establish the accurate dynamical model of industrial robots,which greatly hinders the realization of a stable,fast and accurate trajectory tracking control.Therefore,the general expression of the constraint relation in the explicit dynamic equation of the multi-DOF industrial robot is derived on the basis of solving the Jacobian matrix and Hessian matrix by using the kinematic influence coefficients method.Moreover,an explicit dynamic equation with general constraint relation expression is established based on the Udwadia-Kalaba theory.The problem of increasing the time of establishing constraint relationship when the multi-DOF industrial robots complete complex task constraints is solved.With the SCARA robot as the research object,the simulation results show that the proposed method can provide a new idea for industrial robot system modeling with complex constraints.
基金The National Key Research and Development Program of China(No.2018YFB1600300,2018YFB1600304,2018YFB1600305)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_0133)the Scientific Research Foundation of Graduate School of Southeast University.
文摘To clarify the importance of various influencing factors on asphalt pavement rutting deformation and determine a screening method of model indicators,the data of the RIOHTrack full-scale track were examined using the factor analysis method(FAM).Taking the standard test pavement structure of RIOHTrack as an example,four rutting influencing factors from different aspects were determined through statistical analysis.Furthermore,the common influencing factors among the rutting influencing factors were studied based on FAM.Results show that the common factor can well characterize accumulative ESALs,center-point deflection,and temperature,besides humidity,which indicates that these three influencing factors can have an important impact on rutting.Moreover,an empirical rutting prediction model was established based on the selected influencing factors,which proved to exhibit high prediction accuracy.These analysis results demonstrate that the FAM is an effective screening method for rutting prediction model indicators,which provides a reference for the selection of independent model indicators in other rutting prediction model research when used in other areas and is of great significance for the prediction and control of rutting distress.
文摘Based on the analysis of the grain supply and demand gap’s current situation in China, this paper establishes an indicator system for the influence factors of grain supply and demand gap. Then this paper calculates the correlation degree between the main grain varieties’ supply and demand gap and its influence factors. The results show that sown area and unit yield have the greatest impact on wheat supply and demand gap;per capita disposable income and unit yield have the greatest impact on corn supply and demand gap;per capita disposable income and agricultural mechanization level have the greatest impact on the supply and demand gap of soybean and rice. From the analysis results, we can obtain the difference between the factors affecting the grain supply and demand gap, and provide a certain theoretical basis and new ideas for the balance of grain supply and demand in China.
基金a grant from the National Natural Science Foundation of China (No. 50674046)a grant from the Scientific Research Fund of Hunan Provincial Education Department(No. 07C293).
文摘Based on the features of the serious deformation of coal roadway,many random variables of the mechanics of the surrounding rocks and the influence of mining, the reliability analysis model of the support structure of coal roadway under the influence of mining is established,and the calculating formulas of reliability of the support structure is obtained with the engineering structure reliability theory. And the reliability is calculated based on the method of Monte Carlo to the coal roadway which is exampled on the influence of mining or not. The relationship between support parameters and reliability, the mining influence coefficients and reliability is established, which provides theory foundations for the design of the coal roadway bolt support.
基金Project(51606224) supported by the National Natural Science Foundation of China
文摘The recently proposed interface propagation-based method has shown its advantages in obtaining the thermal conductivity of phase change materials during solid-liquid transition over conventional techniques. However, in previous investigation, the analysis on the measurement error was qualitative and only focused on the total effects on the measurement without decoupling the influencing factors. This paper discusses the effects of influencing factors on the measurement results for the interface propagation-based method. Numerical simulations were performed to explore the influencing factors, namely model simplification, subcooling and natural convection, along with their impact on the measurement process and corresponding measurement results. The numerical solutions were provided in terms of moving curves of the solid-liquid interface and the predicted values of thermal conductivity. Results indicated that the impact of simplified model was strongly dependent on Stefan number of the melting process. The degree of subcooling would lead to underestimated values for thermal conductivity prediction. The natural convection would intensify the heat transfer rate in the liquid region, thereby overestimating the obtained results of thermal conductivity. Correlations and experimental guidelines are provided. The relative errors are limited in ±1.5%,±3%and ±2% corresponding to the impact of simplified model, subcooling and natural convection, respectively.
基金Sponsored by National Natural Science Foundation of China(50104004)
文摘The error of gaugemeter equation decreases the gap setting precision.The precision of gaugemeter equation is strongly influenced by plate width,work roll radius,backup roll radius,work roll crown,backup roll crown and rolling force.And these influences are hard to measure.All these factors are converted to roll deflection deformation and roll flattening deformation for calculation.In order to calculate the deformation,the theory of influence function method was adopted.By using simulation program,the influence of these factors on deformation was obtained.Then a simple model can be built.With this model,it is convenient to analyze the influence of different factors on gaugemeter equation.
基金This paper is funded by the national key project"The Belt and Road"talent recruitment project named:Comparison of Mining Subsidence Research in China and Poland(No.G2017001).Part of the research was financed from the Grant for Statutory Research AGH-University of Science and Technology in Krakow,Poland No.16.16.150.545.
文摘Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction of ground deformation in many countries is Knothe model.The model developed by Knothe belongs to the stochastic methods and is based on the influence function.In China a prediction method named Probability Integration Method(PIF)was established by Liu Baochen and Liao Guohua based on the stochastic medium theory.Modified version of that model allows to predict ground movements caused by mining operation in extremely complex technical and geological conditions.That model is commonly applied for coal,metal ore and salt deposits.The article presents several modifications of the mathematical model used in China and Poland.This model is very widespread in the world,therefore the generalizations proposed in the article can be implemented for the purposes of prediction surface deformations for various types of deposits in many countries.The presented generalizations were then tested on specific examples of coal mining,copper ore mining and rock salt deposit.The obtained results indicate high efficiency of methods based on the influence function in complex geological and mining conditions.