Determining the moisture influential depth in concrete under drying-wetting cycles is of great interest for investigation of chloride ion transport and thus the initiation of reinforcement corrosion. In this paper, th...Determining the moisture influential depth in concrete under drying-wetting cycles is of great interest for investigation of chloride ion transport and thus the initiation of reinforcement corrosion. In this paper, the moisture transport processes during drying and wetting are modeled by diffusion and absorption. A predictor-corrector implicit scheme of finite difference method is used to solve the partial differential equations. The stability of moisture influential depth is then analyzed with the available numerical tool for both initially saturate and unsaturated concretes. The concept of equilibrium time ratio is proposed for drying-wetting cycles by the balance between water loss and intake during drying and wetting. According to this time ratio, drying-wetting cycles are classified into drying-dominated, wetting-dominated, and equilibrium ones. For drying-dominated cycles, the drying front will penetrate gradually into material while the influential depth is determined by wetting; for wetting-dominated cycles, the wetting front will progress into material while the influential depth is determined by drying. This classification has strong engineering implication and can give a more rational division of convection and diffusion zones of chloride ion transport. The case of concrete in marine splash zone is investigated to illustrate the application of influential depth in durability design of concrete structures.展开更多
The influential depth of moisture transport in a concrete surface subject to drying-wetting cycles was analyzed numerically. The moisture transport was described by a diffusion model with different diffusivities for d...The influential depth of moisture transport in a concrete surface subject to drying-wetting cycles was analyzed numerically. The moisture transport was described by a diffusion model with different diffusivities for drying and wetting. A finite difference scheme was developed to solve the partial differential equations The influential depth was then investigated numerically for initially saturated and unsaturated concretes exposed to drying-wetting actions in marine environments using an equilibrium time ratio concept. The equilibrium time ratio was calculated numerically for a saturated condition and the moisture influential depth is shown to be a linear function of the square root of the drying time. However, this equilibrium time ratio does not exist for an unsaturated condition and the moisture influential depth depends on the initial saturation as well as the drying-wetting time ratio. The results indicate that this model gives more realistic predictions of moisture transport of in situ structural concrete and its durability.展开更多
基金the National Natural Science Foundation of China (No. 50538060)
文摘Determining the moisture influential depth in concrete under drying-wetting cycles is of great interest for investigation of chloride ion transport and thus the initiation of reinforcement corrosion. In this paper, the moisture transport processes during drying and wetting are modeled by diffusion and absorption. A predictor-corrector implicit scheme of finite difference method is used to solve the partial differential equations. The stability of moisture influential depth is then analyzed with the available numerical tool for both initially saturate and unsaturated concretes. The concept of equilibrium time ratio is proposed for drying-wetting cycles by the balance between water loss and intake during drying and wetting. According to this time ratio, drying-wetting cycles are classified into drying-dominated, wetting-dominated, and equilibrium ones. For drying-dominated cycles, the drying front will penetrate gradually into material while the influential depth is determined by wetting; for wetting-dominated cycles, the wetting front will progress into material while the influential depth is determined by drying. This classification has strong engineering implication and can give a more rational division of convection and diffusion zones of chloride ion transport. The case of concrete in marine splash zone is investigated to illustrate the application of influential depth in durability design of concrete structures.
基金the National Natural Science Foundation of China (No. 50538060)
文摘The influential depth of moisture transport in a concrete surface subject to drying-wetting cycles was analyzed numerically. The moisture transport was described by a diffusion model with different diffusivities for drying and wetting. A finite difference scheme was developed to solve the partial differential equations The influential depth was then investigated numerically for initially saturated and unsaturated concretes exposed to drying-wetting actions in marine environments using an equilibrium time ratio concept. The equilibrium time ratio was calculated numerically for a saturated condition and the moisture influential depth is shown to be a linear function of the square root of the drying time. However, this equilibrium time ratio does not exist for an unsaturated condition and the moisture influential depth depends on the initial saturation as well as the drying-wetting time ratio. The results indicate that this model gives more realistic predictions of moisture transport of in situ structural concrete and its durability.